Sean Johnson, Kiyoshi Yoshioka, Cynthia S Brace, Shin-Ichiro Imai
{"title":"Quantification of localized NAD<sup>+</sup> changes reveals unique specificity of NAD<sup>+</sup> regulation in the hypothalamus.","authors":"Sean Johnson, Kiyoshi Yoshioka, Cynthia S Brace, Shin-Ichiro Imai","doi":"10.1038/s41514-023-00098-1","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, it has become a consensus that systemic decreases in NAD<sup>+</sup> are a critical trigger for age-associated functional decline in multiple tissues and organs. The hypothalamus, which contains several functionally distinct subregions called nuclei, functions as a high-order control center of aging in mammals. However, due to a technical difficulty, how NAD<sup>+</sup> levels change locally in each hypothalamic nucleus during aging remains uninvestigated. We were able to establish a new combinatorial methodology, using laser-captured microdissection (LCM) and high-performance liquid chromatography (HPLC), to accurately measure NAD<sup>+</sup> levels in small tissue samples. We applied this methodology to examine local NAD<sup>+</sup> changes in hypothalamic nuclei and found that NAD<sup>+</sup> levels were decreased significantly in the arcuate nucleus (ARC), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), but not in the dorsomedial hypothalamus (DMH) of 22-month-old mice, compared to those of 3-month-old mice. The administration of nicotinamide mononucleotide (NMN) significantly increased NAD<sup>+</sup> levels in all these hypothalamic nuclei. Interestingly, the administration of extracellular nicotinamide phosphoribosyltransferase-containing extracellular vesicles (eNampt-EVs) purified from young mice increased NAD<sup>+</sup> levels in the ARC and DMH. These results reveal the unique specificity of NAD<sup>+</sup> regulation in the hypothalamus during aging.</p>","PeriodicalId":19348,"journal":{"name":"npj Aging","volume":"9 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-023-00098-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, it has become a consensus that systemic decreases in NAD+ are a critical trigger for age-associated functional decline in multiple tissues and organs. The hypothalamus, which contains several functionally distinct subregions called nuclei, functions as a high-order control center of aging in mammals. However, due to a technical difficulty, how NAD+ levels change locally in each hypothalamic nucleus during aging remains uninvestigated. We were able to establish a new combinatorial methodology, using laser-captured microdissection (LCM) and high-performance liquid chromatography (HPLC), to accurately measure NAD+ levels in small tissue samples. We applied this methodology to examine local NAD+ changes in hypothalamic nuclei and found that NAD+ levels were decreased significantly in the arcuate nucleus (ARC), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), but not in the dorsomedial hypothalamus (DMH) of 22-month-old mice, compared to those of 3-month-old mice. The administration of nicotinamide mononucleotide (NMN) significantly increased NAD+ levels in all these hypothalamic nuclei. Interestingly, the administration of extracellular nicotinamide phosphoribosyltransferase-containing extracellular vesicles (eNampt-EVs) purified from young mice increased NAD+ levels in the ARC and DMH. These results reveal the unique specificity of NAD+ regulation in the hypothalamus during aging.