Continuity of attractors for singularly perturbed semilinear problems with nonlinear boundary conditions and large diffusion

IF 0.5 4区 数学 Q3 MATHEMATICS
L. Pires, R. Samprogna
{"title":"Continuity of attractors for singularly perturbed semilinear problems with nonlinear boundary conditions and large diffusion","authors":"L. Pires, R. Samprogna","doi":"10.1063/5.0151898","DOIUrl":null,"url":null,"abstract":"We exhibit singularly perturbed parabolic problems with large diffusion and nonhomogeneous boundary conditions for which the asymptotic behavior can be described by a one-dimensional ordinary differential equation. We estimate the continuity of attractors in Hausdorff’s metric by the rate of convergence of resolvent operators. Moreover, we will show explicitly how this estimate of continuity varies exponentially with the fractional power spaces Xα for α in an appropriate interval.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0151898","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We exhibit singularly perturbed parabolic problems with large diffusion and nonhomogeneous boundary conditions for which the asymptotic behavior can be described by a one-dimensional ordinary differential equation. We estimate the continuity of attractors in Hausdorff’s metric by the rate of convergence of resolvent operators. Moreover, we will show explicitly how this estimate of continuity varies exponentially with the fractional power spaces Xα for α in an appropriate interval.
具有非线性边界条件和大扩散的奇摄动半线性问题吸引子的连续性
我们展示了具有大扩散和非齐次边界条件的奇摄动抛物型问题,其渐近性质可以用一维常微分方程来描述。通过求解算子的收敛速度估计了Hausdorff度规中吸引子的连续性。此外,我们将明确地说明连续性的估计如何在适当的区间内随分数幂空间Xα呈指数变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信