Igor Catão Martins Vaz, Lucas Niehuns Antunes, E. Ghisi, L. Thives
{"title":"Permeable Pavements as a Means to Save Water in Buildings: State of the Art","authors":"Igor Catão Martins Vaz, Lucas Niehuns Antunes, E. Ghisi, L. Thives","doi":"10.20944/preprints202108.0576.v1","DOIUrl":null,"url":null,"abstract":"Permeable pavements have been the subject of numerous studies in recent decades. The possibility of dissipating stormwater more smoothly and generating numerous benefits to the environment and users makes the use of permeable pavements an excellent possibility of integration into sustainable and resilient water management systems in cities. In Brazil, numerous studies on the quantity and quality of infiltrated water, permeability of the coating, clogging, environmental burden, feasibility, among other characteristics, have been researched. Within this theme, the Federal University of Santa Catarina (UFSC) has contributed with ten papers in the research of permeable pavements in the last six years, which address various topics about the effectiveness and applicability of permeable pavements. This paper reviews the studies conducted at UFSC on permeable pavements and discusses the different results within the main issues found. In general, the selected documents addressed seven themes in the studies: potential for potable water savings, clogging, quantity and quality of the water infiltrated into the pavement, Life Cycle Assessment (LCA) and its variants, and hydraulic and structural design details. More specifically, many selected papers assess the potential use of stormwater harvested through permeable pavements in non-potable uses of buildings. The possibility of aligning the benefits of green infrastructure with the rational use of water expands the advantages of the system and can help prevent future water scarcity, as well as reduce the environmental impacts of paving.","PeriodicalId":10987,"journal":{"name":"Decis. Sci.","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202108.0576.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Permeable pavements have been the subject of numerous studies in recent decades. The possibility of dissipating stormwater more smoothly and generating numerous benefits to the environment and users makes the use of permeable pavements an excellent possibility of integration into sustainable and resilient water management systems in cities. In Brazil, numerous studies on the quantity and quality of infiltrated water, permeability of the coating, clogging, environmental burden, feasibility, among other characteristics, have been researched. Within this theme, the Federal University of Santa Catarina (UFSC) has contributed with ten papers in the research of permeable pavements in the last six years, which address various topics about the effectiveness and applicability of permeable pavements. This paper reviews the studies conducted at UFSC on permeable pavements and discusses the different results within the main issues found. In general, the selected documents addressed seven themes in the studies: potential for potable water savings, clogging, quantity and quality of the water infiltrated into the pavement, Life Cycle Assessment (LCA) and its variants, and hydraulic and structural design details. More specifically, many selected papers assess the potential use of stormwater harvested through permeable pavements in non-potable uses of buildings. The possibility of aligning the benefits of green infrastructure with the rational use of water expands the advantages of the system and can help prevent future water scarcity, as well as reduce the environmental impacts of paving.