{"title":"Atomic Layer Deposition for Vertically Integrated ZnO Thin Film Transistors: Toward 3D High Packing Density Thin Film Electronics","authors":"Zulkarneyn Sisman, Sami Bolat, A. Okyay","doi":"10.1002/PSSC.201700128","DOIUrl":null,"url":null,"abstract":"We report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality.