Building fuzzy time series model from unsupervised learning technique and genetic algorithm.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2021-10-18 DOI:10.1007/s00521-021-06485-7
Dinh Phamtoan, Tai Vovan
{"title":"Building fuzzy time series model from unsupervised learning technique and genetic algorithm.","authors":"Dinh Phamtoan, Tai Vovan","doi":"10.1007/s00521-021-06485-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a new model to interpolate time series and forecast it effectively for the future. The important contribution of this study is the combination of optimal techniques for fuzzy clustering problem using genetic algorithm and forecasting model for fuzzy time series. Firstly, the proposed model finds the suitable number of clusters for a series and optimizes the clustering problem by the genetic algorithm using the improved Davies and Bouldin index as the objective function. Secondly, the study gives the method to establish the fuzzy relationship of each element to the established clusters. Finally, the developed model establishes the rule to forecast for the future. The steps of the proposed model are presented clearly and illustrated by the numerical example. Furthermore, it has been realized positively by the established MATLAB procedure. Performing for a lot of series (3007 series) with the differences about characteristics and areas, the new model has shown the significant performance in comparison with the existing models via some parameters to evaluate the built model. In addition, we also present an application of the proposed model in forecasting the COVID-19 victims in Vietnam that it can perform similarly for other countries. The numerical examples and application show potential in the forecasting area of this research.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06485-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new model to interpolate time series and forecast it effectively for the future. The important contribution of this study is the combination of optimal techniques for fuzzy clustering problem using genetic algorithm and forecasting model for fuzzy time series. Firstly, the proposed model finds the suitable number of clusters for a series and optimizes the clustering problem by the genetic algorithm using the improved Davies and Bouldin index as the objective function. Secondly, the study gives the method to establish the fuzzy relationship of each element to the established clusters. Finally, the developed model establishes the rule to forecast for the future. The steps of the proposed model are presented clearly and illustrated by the numerical example. Furthermore, it has been realized positively by the established MATLAB procedure. Performing for a lot of series (3007 series) with the differences about characteristics and areas, the new model has shown the significant performance in comparison with the existing models via some parameters to evaluate the built model. In addition, we also present an application of the proposed model in forecasting the COVID-19 victims in Vietnam that it can perform similarly for other countries. The numerical examples and application show potential in the forecasting area of this research.

Abstract Image

Abstract Image

Abstract Image

利用无监督学习技术和遗传算法建立模糊时间序列模型
本文提出了一种新的模型来对时间序列进行插值并有效预测未来。本研究的重要贡献在于利用遗传算法将模糊聚类问题的优化技术与模糊时间序列的预测模型相结合。首先,提出的模型为序列找到合适的聚类数量,并以改进的戴维斯和博尔丁指数为目标函数,通过遗传算法优化聚类问题。其次,该研究给出了建立各元素与已建立聚类的模糊关系的方法。最后,所开发的模型建立了预测未来的规则。研究清楚地介绍了建议模型的各个步骤,并通过数字示例进行了说明。此外,该模型已通过 MATLAB 程序积极实现。新模型通过评估所建模型的一些参数,在与现有模型的比较中显示出显著的性能。此外,我们还介绍了所建模型在越南 COVID-19 受害者预测中的应用,该模型在其他国家也有类似表现。数字实例和应用表明了该研究在预测领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信