Mukesh Kumar Dasoundhi, Indu Rajput, D. Kumar, A. Lakhani
{"title":"Field induced transport studies of antimony crystal","authors":"Mukesh Kumar Dasoundhi, Indu Rajput, D. Kumar, A. Lakhani","doi":"10.1063/1.5130216","DOIUrl":null,"url":null,"abstract":"We report the growth, characterization and magneto-transport study of Antimony crystal at low temperature and high magnetic field. The Antimony crystal is synthesized by controlled heating and cooling of the Antimony granules. The single-phase formation of Antimony crystal is confirmed by powder X-ray diffraction (XRD) and its Rietveld refinement analysis. XRD on cleaved crystal shows the preferred orientation along (003) direction. The zero-field resistivity shows the signature of electron-phonon scattering and electron-electron scattering at higher and lower temperature regimes respectively. Antimony exhibits the semimetallic nature like Bismuth and Arsenic and shows a large magnetoresistance (MR) at low temperature and high magnetic field. Here, we explain the conditions responsible for the field induced behavior.We report the growth, characterization and magneto-transport study of Antimony crystal at low temperature and high magnetic field. The Antimony crystal is synthesized by controlled heating and cooling of the Antimony granules. The single-phase formation of Antimony crystal is confirmed by powder X-ray diffraction (XRD) and its Rietveld refinement analysis. XRD on cleaved crystal shows the preferred orientation along (003) direction. The zero-field resistivity shows the signature of electron-phonon scattering and electron-electron scattering at higher and lower temperature regimes respectively. Antimony exhibits the semimetallic nature like Bismuth and Arsenic and shows a large magnetoresistance (MR) at low temperature and high magnetic field. Here, we explain the conditions responsible for the field induced behavior.","PeriodicalId":20725,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report the growth, characterization and magneto-transport study of Antimony crystal at low temperature and high magnetic field. The Antimony crystal is synthesized by controlled heating and cooling of the Antimony granules. The single-phase formation of Antimony crystal is confirmed by powder X-ray diffraction (XRD) and its Rietveld refinement analysis. XRD on cleaved crystal shows the preferred orientation along (003) direction. The zero-field resistivity shows the signature of electron-phonon scattering and electron-electron scattering at higher and lower temperature regimes respectively. Antimony exhibits the semimetallic nature like Bismuth and Arsenic and shows a large magnetoresistance (MR) at low temperature and high magnetic field. Here, we explain the conditions responsible for the field induced behavior.We report the growth, characterization and magneto-transport study of Antimony crystal at low temperature and high magnetic field. The Antimony crystal is synthesized by controlled heating and cooling of the Antimony granules. The single-phase formation of Antimony crystal is confirmed by powder X-ray diffraction (XRD) and its Rietveld refinement analysis. XRD on cleaved crystal shows the preferred orientation along (003) direction. The zero-field resistivity shows the signature of electron-phonon scattering and electron-electron scattering at higher and lower temperature regimes respectively. Antimony exhibits the semimetallic nature like Bismuth and Arsenic and shows a large magnetoresistance (MR) at low temperature and high magnetic field. Here, we explain the conditions responsible for the field induced behavior.