HeRo 2.0: a low-cost robot for swarm robotics research

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Paulo Rezeck, Héctor Azpúrua, Maurício F. S. Corrêa, Luiz Chaimowicz
{"title":"HeRo 2.0: a low-cost robot for swarm robotics research","authors":"Paulo Rezeck,&nbsp;Héctor Azpúrua,&nbsp;Maurício F. S. Corrêa,&nbsp;Luiz Chaimowicz","doi":"10.1007/s10514-023-10100-0","DOIUrl":null,"url":null,"abstract":"<div><p>The current state of electronic component miniaturization coupled with the increasing efficiency in hardware and software allow the development of smaller and compact robotic systems. The convenience of using these small, simple, yet capable robots has gathered the research community’s attention towards practical applications of swarm robotics. This paper presents the design of a novel platform for swarm robotics applications that is low cost, easy to assemble using off-the-shelf components, and deeply integrated with the most used robotic framework available today: ROS (Robot Operating System). The robotic platform is entirely open, composed of a 3D printed body and open-source software. We describe its architecture, present its main features, and evaluate its functionalities executing experiments using a couple of robots. Results demonstrate that the proposed mobile robot is capable of performing different swarm tasks, given its small size and reduced cost, being suitable for swarm robotics research and education.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 7","pages":"879 - 903"},"PeriodicalIF":3.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10100-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

The current state of electronic component miniaturization coupled with the increasing efficiency in hardware and software allow the development of smaller and compact robotic systems. The convenience of using these small, simple, yet capable robots has gathered the research community’s attention towards practical applications of swarm robotics. This paper presents the design of a novel platform for swarm robotics applications that is low cost, easy to assemble using off-the-shelf components, and deeply integrated with the most used robotic framework available today: ROS (Robot Operating System). The robotic platform is entirely open, composed of a 3D printed body and open-source software. We describe its architecture, present its main features, and evaluate its functionalities executing experiments using a couple of robots. Results demonstrate that the proposed mobile robot is capable of performing different swarm tasks, given its small size and reduced cost, being suitable for swarm robotics research and education.

Abstract Image

HeRo 2.0:用于群体机器人研究的低成本机器人
电子元件小型化的现状,加上硬件和软件效率的提高,使得更小、更紧凑的机器人系统得以发展。使用这些小型、简单、但功能强大的机器人的便利性吸引了研究界对群体机器人实际应用的关注。本文介绍了一种新颖的群体机器人应用平台的设计,该平台成本低,易于使用现成的组件组装,并与当今最常用的机器人框架ROS(机器人操作系统)深度集成。机器人平台是完全开放的,由3D打印的身体和开源软件组成。我们描述了它的架构,介绍了它的主要特点,并评估了它的功能,使用几个机器人执行实验。结果表明,所设计的移动机器人体积小,成本低,能够执行不同的群体任务,适合于群体机器人的研究和教育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信