BOUNDARY BLOW-UP SOLUTIONS TO EQUATIONS INVOLVING THE INFINITY LAPLACIAN

IF 0.5 4区 数学 Q3 MATHEMATICS
Cuicui Li, Fang Liu, P. Zhao
{"title":"BOUNDARY BLOW-UP SOLUTIONS TO EQUATIONS INVOLVING THE INFINITY LAPLACIAN","authors":"Cuicui Li, Fang Liu, P. Zhao","doi":"10.1017/S1446788722000131","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the boundary blow-up problem related to the infinity Laplacian \n$$ \\begin{align*}\\begin{cases} \\Delta_{\\infty}^h u=u^q &\\mathrm{in}\\; \\Omega, \\\\ u=\\infty &\\mathrm{on} \\;\\partial\\Omega, \\end{cases} \\end{align*} $$\n where \n$\\Delta _{\\infty }^h u=|Du|^{h-3} \\langle D^2uDu,Du \\rangle $\n is the highly degenerate and h-homogeneous operator associated with the infinity Laplacian arising from the stochastic game named Tug-of-War. When \n$q>h>1$\n , we establish the existence of the boundary blow-up viscosity solution. Moreover, when the domain satisfies some regular condition, we establish the asymptotic estimate of the blow-up solution near the boundary. As an application of the asymptotic estimate and the comparison principle, we obtain the uniqueness result of the large solution. We also give the nonexistence of the large solution for the case \n$q \\leq h.$","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study the boundary blow-up problem related to the infinity Laplacian $$ \begin{align*}\begin{cases} \Delta_{\infty}^h u=u^q &\mathrm{in}\; \Omega, \\ u=\infty &\mathrm{on} \;\partial\Omega, \end{cases} \end{align*} $$ where $\Delta _{\infty }^h u=|Du|^{h-3} \langle D^2uDu,Du \rangle $ is the highly degenerate and h-homogeneous operator associated with the infinity Laplacian arising from the stochastic game named Tug-of-War. When $q>h>1$ , we establish the existence of the boundary blow-up viscosity solution. Moreover, when the domain satisfies some regular condition, we establish the asymptotic estimate of the blow-up solution near the boundary. As an application of the asymptotic estimate and the comparison principle, we obtain the uniqueness result of the large solution. We also give the nonexistence of the large solution for the case $q \leq h.$
无穷拉普拉斯方程的边界爆破解
摘要本文研究了与无穷拉普拉斯算子$$ \begin{align*}\begin{cases} \Delta_{\infty}^h u=u^q &\mathrm{in}\; \Omega, \\ u=\infty &\mathrm{on} \;\partial\Omega, \end{cases} \end{align*} $$相关的边界爆破问题,其中$\Delta _{\infty }^h u=|Du|^{h-3} \langle D^2uDu,Du \rangle $是由拔河随机博弈引起的与无穷拉普拉斯算子相关的高度简并h齐次算子。当$q>h>1$时,建立了边界爆破黏度解的存在性。此外,当区域满足某些正则条件时,我们在边界附近建立了爆破解的渐近估计。应用渐近估计和比较原理,得到了大解的唯一性结果。我们也给出了这种情况下大解的不存在性 $q \leq h.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信