Efficient Bayesian inversion for shape reconstruction of lithography masks

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
N. Farchmin, M. Hammerschmidt, Philipp‐Immanuel Schneider, M. Wurm, B. Bodermann, M. Bär, S. Heidenreich
{"title":"Efficient Bayesian inversion for shape reconstruction of lithography masks","authors":"N. Farchmin, M. Hammerschmidt, Philipp‐Immanuel Schneider, M. Wurm, B. Bodermann, M. Bär, S. Heidenreich","doi":"10.1117/1.JMM.19.2.024001","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Scatterometry is a fast, indirect, and nondestructive optical method for quality control in the production of lithography masks. To solve the inverse problem in compliance with the upcoming need for improved accuracy, a computationally expensive forward model that maps geometry parameters to diffracted light intensities has to be defined. Aim: To quantify the uncertainties in the reconstruction of the geometry parameters, a fast-to-evaluate surrogate for the forward model has to be introduced. Approach: We use a nonintrusive polynomial chaos-based approximation of the forward model, which increases speed and thus enables the exploration of the posterior through direct Bayesian inference. In addition, this surrogate allows for a global sensitivity analysis at no additional computational overhead. Results: This approach yields information about the complete distribution of the geometry parameters of a silicon line grating, which in return allows for quantifying the reconstruction uncertainties in the form of means, variances, and higher order moments of the parameters. Conclusions: The use of a polynomial chaos surrogate allows for quantifying both parameter influences and reconstruction uncertainties. This approach is easy to use since no adaptation of the expensive forward model is required.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"12 1","pages":"024001 - 024001"},"PeriodicalIF":1.5000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.19.2.024001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract. Background: Scatterometry is a fast, indirect, and nondestructive optical method for quality control in the production of lithography masks. To solve the inverse problem in compliance with the upcoming need for improved accuracy, a computationally expensive forward model that maps geometry parameters to diffracted light intensities has to be defined. Aim: To quantify the uncertainties in the reconstruction of the geometry parameters, a fast-to-evaluate surrogate for the forward model has to be introduced. Approach: We use a nonintrusive polynomial chaos-based approximation of the forward model, which increases speed and thus enables the exploration of the posterior through direct Bayesian inference. In addition, this surrogate allows for a global sensitivity analysis at no additional computational overhead. Results: This approach yields information about the complete distribution of the geometry parameters of a silicon line grating, which in return allows for quantifying the reconstruction uncertainties in the form of means, variances, and higher order moments of the parameters. Conclusions: The use of a polynomial chaos surrogate allows for quantifying both parameter influences and reconstruction uncertainties. This approach is easy to use since no adaptation of the expensive forward model is required.
光刻掩模形状重建的高效贝叶斯反演
摘要背景:散射法是一种快速、间接、无损的光学方法,用于光刻掩模生产的质量控制。为了解决逆问题,以满足即将到来的提高精度的需要,必须定义一个计算成本很高的正演模型,该模型将几何参数映射到衍射光强度。目的:为了量化几何参数重建中的不确定性,必须引入一种快速评估的正演模型替代物。方法:我们使用基于混沌的非侵入性多项式逼近正向模型,这提高了速度,从而可以通过直接贝叶斯推理来探索后验。此外,该代理允许在没有额外计算开销的情况下进行全局敏感性分析。结果:这种方法产生了关于硅线光栅几何参数完整分布的信息,这反过来又允许以参数的均值、方差和高阶矩的形式量化重建不确定性。结论:使用多项式混沌替代物可以量化参数影响和重建不确定性。这种方法很容易使用,因为不需要对昂贵的前向模型进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信