The nilpotent genus of finitely generated residually nilpotent groups

Pub Date : 2022-03-04 DOI:10.1515/jgth-2022-0098
N. O’Sullivan
{"title":"The nilpotent genus of finitely generated residually nilpotent groups","authors":"N. O’Sullivan","doi":"10.1515/jgth-2022-0098","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝐺 and 𝐻 be residually nilpotent groups. Then 𝐺 and 𝐻 are in the same nilpotent genus if they have the same lower central quotients (up to isomorphism). A potentially stronger condition is that 𝐻 is para-𝐺 if there exists a monomorphism of 𝐺 into 𝐻 which induces isomorphisms between the corresponding quotients of their lower central series. We first consider finitely generated residually nilpotent groups and find sufficient conditions on the monomorphism so that 𝐻 is para-𝐺. We then prove that, for certain polycyclic groups, if 𝐻 is para-𝐺, then 𝐺 and 𝐻 have the same Hirsch length. We also prove that the pro-nilpotent completions of these polycyclic groups are locally polycyclic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let 𝐺 and 𝐻 be residually nilpotent groups. Then 𝐺 and 𝐻 are in the same nilpotent genus if they have the same lower central quotients (up to isomorphism). A potentially stronger condition is that 𝐻 is para-𝐺 if there exists a monomorphism of 𝐺 into 𝐻 which induces isomorphisms between the corresponding quotients of their lower central series. We first consider finitely generated residually nilpotent groups and find sufficient conditions on the monomorphism so that 𝐻 is para-𝐺. We then prove that, for certain polycyclic groups, if 𝐻 is para-𝐺, then 𝐺 and 𝐻 have the same Hirsch length. We also prove that the pro-nilpotent completions of these polycyclic groups are locally polycyclic.
分享
查看原文
有限生成残幂零群的幂零格
设𝐺和𝐻是残幂零群。如果𝐺和𝐻具有相同的低中心商(直到同构),则它们在同一个幂零属中。一个潜在的更强的条件是,𝐻是准𝐺,如果存在𝐺到𝐻的单态,从而在它们的下中心序列的相应商之间诱导同构。我们首先考虑有限生成的剩余幂零群,并找到了使𝐻是准𝐺的单态的充分条件。然后证明,对于某些多环基团,如果𝐻是对𝐺,则𝐺和𝐻具有相同的赫希长度。我们还证明了这些多环基团的亲零补全是局部多环的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信