Lovemore Gunda, E. Chikuni, H. Tazvinga, J. Mudare
{"title":"Estimating wind power generation capacity in Zimbabwe using vertical wind profile extrapolation techniques: A case study","authors":"Lovemore Gunda, E. Chikuni, H. Tazvinga, J. Mudare","doi":"10.17159/2413-3051/2021/V32I1A8205","DOIUrl":null,"url":null,"abstract":"Only 40% of Zimbabwe’s population has access to electricity. The greater proportion of the power is generated from thermal stations, with some from hydro and solar energy sources. However, there is little investment in the use of wind for electricity generation except for small installations in the Eastern Highlands, as Zimbabwe generally has wind speeds which are too low to be utilised for electricity generation. This paper presents the use of vertical wind profile extrapolation methods to determine the potential of generating electricity from wind at different hub heights in Zimbabwe, using the Hellman and exponential laws to estimate wind speeds. The estimated wind speeds are used to determine the potential of generating electricity from wind. Mangwe district in Matabeleland South province of Zimbabwe was used as a test site. Online weather datasets were used to estimate the wind speeds. The investigation shows that a 2.5kW wind turbine installation in Mangwe can generate more than 3MWh of energy per annum at hub heights above 40m, which is enough to supply power to a typical Zimbabwean rural village. This result will encourage investment in the use of wind to generate electricity in Zimbabwe.","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"65 1","pages":"14-26"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2021/V32I1A8205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4
Abstract
Only 40% of Zimbabwe’s population has access to electricity. The greater proportion of the power is generated from thermal stations, with some from hydro and solar energy sources. However, there is little investment in the use of wind for electricity generation except for small installations in the Eastern Highlands, as Zimbabwe generally has wind speeds which are too low to be utilised for electricity generation. This paper presents the use of vertical wind profile extrapolation methods to determine the potential of generating electricity from wind at different hub heights in Zimbabwe, using the Hellman and exponential laws to estimate wind speeds. The estimated wind speeds are used to determine the potential of generating electricity from wind. Mangwe district in Matabeleland South province of Zimbabwe was used as a test site. Online weather datasets were used to estimate the wind speeds. The investigation shows that a 2.5kW wind turbine installation in Mangwe can generate more than 3MWh of energy per annum at hub heights above 40m, which is enough to supply power to a typical Zimbabwean rural village. This result will encourage investment in the use of wind to generate electricity in Zimbabwe.
期刊介绍:
The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe.
Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.