Development and Structural Integration of Electrospun Carbon Nanofibers with Multi-layer Graphene Patches

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
Alieze A.B., B. Dreyer, J. Aprojanz, C. Tegenkamp, F. Renz, R. Sindelar
{"title":"Development and Structural Integration of Electrospun Carbon Nanofibers with Multi-layer Graphene Patches","authors":"Alieze A.B., B. Dreyer, J. Aprojanz, C. Tegenkamp, F. Renz, R. Sindelar","doi":"10.33425/2639-9466.1001","DOIUrl":null,"url":null,"abstract":"Among the carbon based nanostructured materials, Carbon Nanofibers (CNF) have got unique prominence since past decade due to excellent mechanical and electrical properties combined by their cheap and easy fabrication process. CNF with graphene layered structure were developed by electrospinning of PAN (Polyacrylonitrile) and subsequent post treatments under specialized conditions. The assembly of graphene layers in the form of patches on the CNF surface was examined by Raman spectroscopy and TEM. Structural changes of CNF under different temperatures from 800°C 1500°C in reducing atmosphere have been investigated. Crystallite size, ID/IG, and FWHM for D and G characteristic bands were evaluated via Raman peak fitting and X-ray diffraction spectroscopy. Results have shown that CNF carbonized at 1500°C with prior external straining (creep stress) applied during the oxidative stabilization process showed emergence of a symmetrical sharp 2D peak in Raman spectrum with I2D/IG ratio of nearly multi-layer graphene. High temperature heat treatment along with creep stress during the stabilization process results in transforming more of the amorphous carbon into the ordered graphitic domains, leading to assembly of graphene layers on carbon nanofiber surface.","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"66 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33425/2639-9466.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Among the carbon based nanostructured materials, Carbon Nanofibers (CNF) have got unique prominence since past decade due to excellent mechanical and electrical properties combined by their cheap and easy fabrication process. CNF with graphene layered structure were developed by electrospinning of PAN (Polyacrylonitrile) and subsequent post treatments under specialized conditions. The assembly of graphene layers in the form of patches on the CNF surface was examined by Raman spectroscopy and TEM. Structural changes of CNF under different temperatures from 800°C 1500°C in reducing atmosphere have been investigated. Crystallite size, ID/IG, and FWHM for D and G characteristic bands were evaluated via Raman peak fitting and X-ray diffraction spectroscopy. Results have shown that CNF carbonized at 1500°C with prior external straining (creep stress) applied during the oxidative stabilization process showed emergence of a symmetrical sharp 2D peak in Raman spectrum with I2D/IG ratio of nearly multi-layer graphene. High temperature heat treatment along with creep stress during the stabilization process results in transforming more of the amorphous carbon into the ordered graphitic domains, leading to assembly of graphene layers on carbon nanofiber surface.
多层石墨烯贴片电纺碳纳米纤维的研制与结构集成
在碳基纳米结构材料中,碳纳米纤维(CNF)由于其优异的机械性能和电气性能,以及其廉价和易于制造的工艺,在近十年来得到了独特的重视。采用静电纺丝法制备聚丙烯腈(PAN),并在特定条件下进行后处理,制备出具有石墨烯层状结构的CNF。利用拉曼光谱和透射电镜研究了石墨烯层在CNF表面以斑块形式组装的过程。研究了CNF在800℃~ 1500℃还原气氛下的结构变化。通过拉曼峰拟合和x射线衍射光谱对D和G特征波段的晶粒尺寸、ID/IG和FWHM进行了评价。结果表明,在氧化稳定化过程中,在1500°C下碳化的CNF在氧化稳定化过程中预先施加外部应变(蠕变应力),在拉曼光谱中出现了一个对称的尖锐的二维峰,其I2D/IG比接近多层石墨烯。高温热处理和稳定化过程中的蠕变应力导致更多的非晶态碳转变为有序的石墨畴,导致石墨烯层在纳米碳纤维表面组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信