A. Michałowska-Kaczmarczyk, T. Michałowski, M. Toporek, A. Pietrzyk
{"title":"Solubility and Dissolution in Terms of Generalized Approach to Electrolytic Systems Principles","authors":"A. Michałowska-Kaczmarczyk, T. Michałowski, M. Toporek, A. Pietrzyk","doi":"10.4236/JASMI.2015.54006","DOIUrl":null,"url":null,"abstract":"The correct approach, based on the rules of conservation and detailed physicochemical/thermodynamic knowledge on the system considered is opposed to conventional approach to solubility and dissolution, based on stoichiometry of a reaction notation and on the solubility product (Ksp) of a precipitate. The correct approach is realized according to Generalized Approach to Electrolytic Systems (GATES) principles, with use of iterative programs applied for computational purposes. All the qualitative and quantitative knowledge is involved in the balances and independent expressions for the equilibrium constants. Three two-phase electrolytic systems with diversified chemical properties were selected carefully, from the viewpoint of their diversity. The results of calculations are presented graphically and discussed. The advantages of the GATES in resolution of two-phase (static) non-redox systems and one complex (dynamic) redox system are proved.","PeriodicalId":14932,"journal":{"name":"Journal of Analytical Sciences, Methods and Instrumentation","volume":"41 1","pages":"47-58"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Sciences, Methods and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JASMI.2015.54006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The correct approach, based on the rules of conservation and detailed physicochemical/thermodynamic knowledge on the system considered is opposed to conventional approach to solubility and dissolution, based on stoichiometry of a reaction notation and on the solubility product (Ksp) of a precipitate. The correct approach is realized according to Generalized Approach to Electrolytic Systems (GATES) principles, with use of iterative programs applied for computational purposes. All the qualitative and quantitative knowledge is involved in the balances and independent expressions for the equilibrium constants. Three two-phase electrolytic systems with diversified chemical properties were selected carefully, from the viewpoint of their diversity. The results of calculations are presented graphically and discussed. The advantages of the GATES in resolution of two-phase (static) non-redox systems and one complex (dynamic) redox system are proved.