W Q Ke, Y R Pan, L H Chen, J D Huang, J J Zhang, X Y Long, M L Cai, C L Peng
{"title":"Adaptive photosynthetic strategies of the invasive plant <i>Sphagneticola trilobata</i> and its hybrid to a low-light environment.","authors":"W Q Ke, Y R Pan, L H Chen, J D Huang, J J Zhang, X Y Long, M L Cai, C L Peng","doi":"10.32615/ps.2022.051","DOIUrl":null,"url":null,"abstract":"<p><p>In stressful environments, invasive plants acclimate more efficiently than native plants and hybridization mainly contributes to this process. We examined changes in the morphological characteristics, photosynthetic characteristics, and antioxidant capacity of <i>Sphagneticola trilobata</i> and its hybrids in a low-light environment to explore their invasiveness, with <i>Sphagneticola calendulacea</i> serving as the control. The morphological plasticity of <i>S. trilobata</i> was not dominant, the maximal photochemical efficiency of PSII, actual quantum yield of PSII, and electron transport rate of PSII increased and nonphotochemical quenching decreased, while <i>S. calendulacea</i> and the hybrid produced opposite results. <i>S. trilobata</i> showed fewer spots stained for reactive oxygen species in tissues, with an increase in superoxide dismutase activity. Although <i>S. trilobata</i> is a heliophilous plant, we found that the shade tolerance of <i>S. trilobata</i> and the hybrid were stronger than that of <i>S. calendulacea</i>, which may be one important mechanism of invasion.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"243 1","pages":"549-561"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.051","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In stressful environments, invasive plants acclimate more efficiently than native plants and hybridization mainly contributes to this process. We examined changes in the morphological characteristics, photosynthetic characteristics, and antioxidant capacity of Sphagneticola trilobata and its hybrids in a low-light environment to explore their invasiveness, with Sphagneticola calendulacea serving as the control. The morphological plasticity of S. trilobata was not dominant, the maximal photochemical efficiency of PSII, actual quantum yield of PSII, and electron transport rate of PSII increased and nonphotochemical quenching decreased, while S. calendulacea and the hybrid produced opposite results. S. trilobata showed fewer spots stained for reactive oxygen species in tissues, with an increase in superoxide dismutase activity. Although S. trilobata is a heliophilous plant, we found that the shade tolerance of S. trilobata and the hybrid were stronger than that of S. calendulacea, which may be one important mechanism of invasion.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.