{"title":"Garlic and allopurinol alleviate the apoptotic pathway in rats' brain following exposure to fipronil insecticide.","authors":"Amira Abo Bakr, Mohamed Ali, Khairy Ibrahim","doi":"10.5620/eaht.2022037","DOIUrl":null,"url":null,"abstract":"<p><p>Fipronil can cause oxidative tissue damage and apoptosis. Our goal is to evaluate the antiapoptotic impact of garlic or allopurinol against fipronil neurotoxicity. Thirty-six mature male albino rats were separated into control, garlic aqueous extract (500 mg/kg), allopurinol (150 mg/L in their drinking water), fipronil (13.277 mg/kg), garlic+fipronil, and allopurinol+fipronil. Our results revealed that fipronil induced a significant increase in brain malondialdehyde, protein carbonyl levels as well as enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase, and xanthine oxidase), but glutathione-S-transferase recorded a significant decrease as compared to the control. In addition, fipronil significantly up-regulated the brain pro-apoptotic (Bax) and caspase -3 mRNA gene expression and induced DNA fragmentation but caused down-regulation in anti-apoptotic (Bcl-2) mRNA genes expression. Interestingly, co-administration with garlic or allopurinol improved the lipid peroxidation, antioxidant disturbance, and apoptosis induced by fipronil in the brain tissues. In conclusion, garlic or allopurinol reduced fipronil-induced apoptosis and reduced oxidative tissue damage, most likely through enhancing the tissue antioxidant defense system.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"37 4","pages":"e2022037-0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ec/c0/eaht-37-4-e2022037.PMC10014746.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental analysis, health and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5620/eaht.2022037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fipronil can cause oxidative tissue damage and apoptosis. Our goal is to evaluate the antiapoptotic impact of garlic or allopurinol against fipronil neurotoxicity. Thirty-six mature male albino rats were separated into control, garlic aqueous extract (500 mg/kg), allopurinol (150 mg/L in their drinking water), fipronil (13.277 mg/kg), garlic+fipronil, and allopurinol+fipronil. Our results revealed that fipronil induced a significant increase in brain malondialdehyde, protein carbonyl levels as well as enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione peroxidase, and xanthine oxidase), but glutathione-S-transferase recorded a significant decrease as compared to the control. In addition, fipronil significantly up-regulated the brain pro-apoptotic (Bax) and caspase -3 mRNA gene expression and induced DNA fragmentation but caused down-regulation in anti-apoptotic (Bcl-2) mRNA genes expression. Interestingly, co-administration with garlic or allopurinol improved the lipid peroxidation, antioxidant disturbance, and apoptosis induced by fipronil in the brain tissues. In conclusion, garlic or allopurinol reduced fipronil-induced apoptosis and reduced oxidative tissue damage, most likely through enhancing the tissue antioxidant defense system.