S. Kumar, J. Vanualailai, B. Sharma, Avinesh Prasad, Ravinesh Chand
{"title":"A Stable Nonlinear Switched System for Landmark-aided Motion Planning","authors":"S. Kumar, J. Vanualailai, B. Sharma, Avinesh Prasad, Ravinesh Chand","doi":"10.30919/es919","DOIUrl":null,"url":null,"abstract":". Abstract To guarantee navigation accuracy, the robotic applications utilize landmarks. This paper proposes a novel nonlinear switched system for the fundamental motion planning problem in autonomous mobile robot navigation: the generation of continuous collision-free paths to a goal configuration via numerous landmarks (waypoints) in a cluttered environment. The proposed system leverages the Lyapunov-based control scheme (LbCS) and constructs Lyapunov-like functions for the system’s subsystems. These functions guide a planar point-mass object, representing an autonomous robotic agent, towards its goal by utilizing artificial landmarks. Extracting a set of nonlinear, time-invariant, continuous, and stabilizing switched velocity controllers from these Lyapunov-like functions, the system invokes the controllers based on a switching rule, enabling hierarchical landmark navigation in complex environments. Using the well-known stability criteria by Branicky for switched systems based on multiple Lyapunov functions, the stability of the proposed system is provided. A new method to extract action landmarks from multiple landmarks is also introduced. The con-trol laws are then used to control the motion of a nonholonomic car-like vehicle governed by its kinematic equations. Numerical examples with simulations illustrate the effectiveness of the Lyapunov-based control laws. The proposed","PeriodicalId":36059,"journal":{"name":"Engineered Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/es919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
. Abstract To guarantee navigation accuracy, the robotic applications utilize landmarks. This paper proposes a novel nonlinear switched system for the fundamental motion planning problem in autonomous mobile robot navigation: the generation of continuous collision-free paths to a goal configuration via numerous landmarks (waypoints) in a cluttered environment. The proposed system leverages the Lyapunov-based control scheme (LbCS) and constructs Lyapunov-like functions for the system’s subsystems. These functions guide a planar point-mass object, representing an autonomous robotic agent, towards its goal by utilizing artificial landmarks. Extracting a set of nonlinear, time-invariant, continuous, and stabilizing switched velocity controllers from these Lyapunov-like functions, the system invokes the controllers based on a switching rule, enabling hierarchical landmark navigation in complex environments. Using the well-known stability criteria by Branicky for switched systems based on multiple Lyapunov functions, the stability of the proposed system is provided. A new method to extract action landmarks from multiple landmarks is also introduced. The con-trol laws are then used to control the motion of a nonholonomic car-like vehicle governed by its kinematic equations. Numerical examples with simulations illustrate the effectiveness of the Lyapunov-based control laws. The proposed