Classification of Wheat Seeds Using Neural Network Backpropagation Algorithm

Pub Date : 2021-01-18 DOI:10.31289/JITE.V4I2.4449
J. Tanjung
{"title":"Classification of Wheat Seeds Using Neural Network Backpropagation Algorithm","authors":"J. Tanjung","doi":"10.31289/JITE.V4I2.4449","DOIUrl":null,"url":null,"abstract":"There are various types of wheat scattered in the world. Usually it takes a long time to recognize the type of wheat seed by manual method because wheat germ has a physical appearance that looks the same as others. One method that can be used is an Artificial Neural Network. In this study, the data used were secondary data which consisted of data from the variable physical characteristics of wheat germ. The types of wheat seeds that are classified are 3. The Artificial Neural Network architecture used in this study is 5. By comparing the 5 Artificial Neural Network architectures, it is concluded that the architecture consisting of 3 layers and 4 layers is more precise in the classification of wheat germ types. The accuracy obtained by the 2 Artificial Neural Network architectures is 90% and 90%, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/JITE.V4I2.4449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

There are various types of wheat scattered in the world. Usually it takes a long time to recognize the type of wheat seed by manual method because wheat germ has a physical appearance that looks the same as others. One method that can be used is an Artificial Neural Network. In this study, the data used were secondary data which consisted of data from the variable physical characteristics of wheat germ. The types of wheat seeds that are classified are 3. The Artificial Neural Network architecture used in this study is 5. By comparing the 5 Artificial Neural Network architectures, it is concluded that the architecture consisting of 3 layers and 4 layers is more precise in the classification of wheat germ types. The accuracy obtained by the 2 Artificial Neural Network architectures is 90% and 90%, respectively.
分享
查看原文
基于神经网络反向传播算法的小麦种子分类
世界上有各种各样的小麦。由于小麦胚芽具有与其他胚芽相同的物理外观,通常用人工方法识别小麦种子的类型需要很长时间。一种可以使用的方法是人工神经网络。在本研究中,使用的数据是由小麦胚芽可变物理特性的数据组成的二次数据。小麦种子的分类有3种。本研究使用的人工神经网络架构为5。通过对5种人工神经网络结构的比较,得出3层和4层结构在小麦胚芽类型分类中更为精确的结论。两种人工神经网络结构得到的准确率分别为90%和90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信