Burn-in-Testing (BIT) Challenge: to BIT or not to BIT?

E. Suhir
{"title":"Burn-in-Testing (BIT) Challenge: to BIT or not to BIT?","authors":"E. Suhir","doi":"10.4071/1085-8024-2021.1.000031","DOIUrl":null,"url":null,"abstract":"\n Burn-in testing (BIT) is a costly undertaking. Predictive modeling enables shading useful light on what and how should be tested, if at all. Three analytical (“mathematical”) predictive models recently suggested by the author are addressed in this mini-review: 1) A model based on the analysis of the infant mortality portion (IMP) of the bathtub curve (BTC) suggests that the non-random time derivative of the expected “statistical” failure rate (SFR) at the beginning of the IMP could be viewed as a suitable criterion (“figure of merit”) to answer the basic question of the BIT undertaking: “to BIT or not to BIT?” 2) A model based on the analysis of the random failure rate (RFR) of the mass-produced components that the manufactured product of interest is comprised of suggests that the above derivative is, in effect, the RFR variance of these components. 3) A model based on the use of the kinetic multi-parametric Boltzmann-Arrhenius-Zhurkov (BAZ) constitutive equation is employed to establish the BIT's adequate duration and level, if this kind of failure-oriented-accelerated-testing (FOAT) is found to be necessary. The theoretical findings are illustrated by calculated data. It is concluded that predictive modeling should always precede the actual BIT, that analytical modeling should always complement computer simulations and that future work should address the experimental validation and possible extension of the obtained results and recommendations.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/1085-8024-2021.1.000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Burn-in testing (BIT) is a costly undertaking. Predictive modeling enables shading useful light on what and how should be tested, if at all. Three analytical (“mathematical”) predictive models recently suggested by the author are addressed in this mini-review: 1) A model based on the analysis of the infant mortality portion (IMP) of the bathtub curve (BTC) suggests that the non-random time derivative of the expected “statistical” failure rate (SFR) at the beginning of the IMP could be viewed as a suitable criterion (“figure of merit”) to answer the basic question of the BIT undertaking: “to BIT or not to BIT?” 2) A model based on the analysis of the random failure rate (RFR) of the mass-produced components that the manufactured product of interest is comprised of suggests that the above derivative is, in effect, the RFR variance of these components. 3) A model based on the use of the kinetic multi-parametric Boltzmann-Arrhenius-Zhurkov (BAZ) constitutive equation is employed to establish the BIT's adequate duration and level, if this kind of failure-oriented-accelerated-testing (FOAT) is found to be necessary. The theoretical findings are illustrated by calculated data. It is concluded that predictive modeling should always precede the actual BIT, that analytical modeling should always complement computer simulations and that future work should address the experimental validation and possible extension of the obtained results and recommendations.
老化测试(BIT)挑战:要不要进行BIT测试?
老化测试(BIT)是一项代价高昂的工作。如果需要测试的话,预测建模可以为测试内容和测试方式提供有用的光照。本文讨论了作者最近提出的三种分析(“数学”)预测模型:1)基于浴缸曲线(BTC)婴儿死亡率部分(IMP)分析的模型表明,在浴缸曲线(BTC)开始时预期的“统计”失效率(SFR)的非随机时间导数可以被视为回答BIT承诺的基本问题的合适标准(“价值值”):“去BIT还是不去BIT?”“2)基于随机故障率(RFR)的分析模型,该模型表明,上述导数实际上是这些组件的随机故障率方差。3)如果发现有必要进行这种面向失效的加速测试(FOAT),则采用基于动力学多参数Boltzmann-Arrhenius-Zhurkov (BAZ)本构方程的模型来确定BIT的适当持续时间和水平。理论结果用计算数据加以说明。结论是,预测建模应始终先于实际的BIT,分析建模应始终补充计算机模拟,未来的工作应解决实验验证以及所获得的结果和建议的可能扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信