Stability conditions when using theforward difference method

Seppo J. Ovaska, Olli Vainio
{"title":"Stability conditions when using theforward difference method","authors":"Seppo J. Ovaska,&nbsp;Olli Vainio","doi":"10.1016/0921-5956(91)80027-D","DOIUrl":null,"url":null,"abstract":"<div><p>The forward difference method, also known as Euler's method, generates discretetime transfer functions that lead to compact implementations that are desirable for several industrial control applications. However, the potential of Euler's method is usually overlooked because some control literature gives misleading information on the stability of the z-domain poles obtained by Euler's method. In this paper, we derive analytical expressions for the minimum sampling rate that guarantees stability, and the optimum sampling rate that minimizes the modulus of a stable <em>z</em>-domain pole.</p></div>","PeriodicalId":100666,"journal":{"name":"Industrial Metrology","volume":"2 1","pages":"Pages 85-90"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-5956(91)80027-D","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Metrology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092159569180027D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The forward difference method, also known as Euler's method, generates discretetime transfer functions that lead to compact implementations that are desirable for several industrial control applications. However, the potential of Euler's method is usually overlooked because some control literature gives misleading information on the stability of the z-domain poles obtained by Euler's method. In this paper, we derive analytical expressions for the minimum sampling rate that guarantees stability, and the optimum sampling rate that minimizes the modulus of a stable z-domain pole.

采用正演差分法时的稳定性条件
前向差分法,也被称为欧拉方法,产生离散时间传递函数,导致紧凑的实现,是理想的几个工业控制应用。然而,欧拉方法的潜力通常被忽视,因为一些控制文献给出了由欧拉方法获得的z域极点稳定性的误导性信息。本文导出了保证稳定的最小采样率和使稳定z域极点模最小的最佳采样率的解析表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信