Soochan Kim , Eunhwa Ko , Hwan Geun Choi , Daekwon Kim , Monica Luchi , Bernard Khor , Sunghwan Kim
{"title":"FRTX-02, a selective and potent inhibitor of DYRK1A, modulates inflammatory pathways in mouse models of psoriasis and atopic dermatitis","authors":"Soochan Kim , Eunhwa Ko , Hwan Geun Choi , Daekwon Kim , Monica Luchi , Bernard Khor , Sunghwan Kim","doi":"10.1016/j.jtauto.2022.100185","DOIUrl":null,"url":null,"abstract":"<div><p>Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) has been proposed as a novel regulator of adaptive immune homeostasis through modulating T cell polarization. Thus, DYRK1A could present a potential target in autoimmune disorders. Here, we identify FRTX-02 as a novel compound exhibiting potent and selective inhibition of DYRK1A. FRTX-02 induced transcriptional activity of the DYRK1A substrate NFAT in T cell lines. Correspondingly, FRTX-02 promoted ex vivo CD4<sup>+</sup> polarization into anti-inflammatory Tregs and reduced their polarization into pro-inflammatory Th1 or Th17 cells. We show that FRTX-02 could also limit innate immune responses through negative regulation of the MyD88/IRAK4–NF-κB axis in a mast cell line. Finally, in mouse models of psoriasis and atopic dermatitis, both oral and topical formulations of FRTX-02 reduced inflammation and disease biomarkers in a dose-dependent manner. These results support further studies of DYRK1A inhibitors, including FRTX-02, as potential therapies for chronic inflammatory and autoimmune conditions.</p></div>","PeriodicalId":36425,"journal":{"name":"Journal of Translational Autoimmunity","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/12/55/main.PMC9841288.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Autoimmunity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589909022000466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) has been proposed as a novel regulator of adaptive immune homeostasis through modulating T cell polarization. Thus, DYRK1A could present a potential target in autoimmune disorders. Here, we identify FRTX-02 as a novel compound exhibiting potent and selective inhibition of DYRK1A. FRTX-02 induced transcriptional activity of the DYRK1A substrate NFAT in T cell lines. Correspondingly, FRTX-02 promoted ex vivo CD4+ polarization into anti-inflammatory Tregs and reduced their polarization into pro-inflammatory Th1 or Th17 cells. We show that FRTX-02 could also limit innate immune responses through negative regulation of the MyD88/IRAK4–NF-κB axis in a mast cell line. Finally, in mouse models of psoriasis and atopic dermatitis, both oral and topical formulations of FRTX-02 reduced inflammation and disease biomarkers in a dose-dependent manner. These results support further studies of DYRK1A inhibitors, including FRTX-02, as potential therapies for chronic inflammatory and autoimmune conditions.