Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action.

3区 医学 Q2 Medicine
Giulietta Maruggi, Jeffrey B Ulmer, Rino Rappuoli, Dong Yu
{"title":"Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action.","authors":"Giulietta Maruggi,&nbsp;Jeffrey B Ulmer,&nbsp;Rino Rappuoli,&nbsp;Dong Yu","doi":"10.1007/82_2021_233","DOIUrl":null,"url":null,"abstract":"<p><p>Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2021_233","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2021_233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10

Abstract

Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.

基于自扩增mrna的疫苗技术及其作用方式
来自正链RNA病毒基因组的自扩增mrna最近成为疫苗开发的一个有前途的技术平台。非病毒递送的自我扩增mRNA疫苗具有高度通用性、强效、流线型、可扩展和廉价的潜力。通过扩增它们的基因组和宿主细胞中抗原编码的mRNA,自我扩增的mRNA模拟病毒感染,导致持续水平的靶蛋白结合自我辅助的先天免疫反应,最终导致有效和持久的抗原特异性体液和细胞免疫反应。此外,原则上,任何真核生物序列都可以通过自我扩增的mRNA进行编码,而无需改变制造过程,从而使研发时间比目前的疫苗更快、更灵活,从而对新出现的传染病作出更快的反应。本章重点介绍了在动物模型中使用非病毒递送的自我扩增的基于mrna的疫苗对抗传染病方面取得的快速进展。我们概述了这种疫苗方法的独特属性,总结了定义其作用机制的越来越多的工作,讨论了当前的挑战和最新进展,并强调了对这一有前途的技术的未来的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信