Isaac Andrade González, Arturo Moisés Chávez Rodríguez, Alejandra Chávez Rodríguez, Mayra I Montero Cortes, Vania S Farías Cervantes
{"title":"Aloe Vera and Nopal mucilage on the reduction of agglomeration during spray drying and storage of blackberry and raspberry extracts.","authors":"Isaac Andrade González, Arturo Moisés Chávez Rodríguez, Alejandra Chávez Rodríguez, Mayra I Montero Cortes, Vania S Farías Cervantes","doi":"10.1177/10820132231161229","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this investigation was to evaluate the influence of two carrier agents, Nopal and Aloe Vera mucilage on the physicochemical properties and stability of blackberry and raspberry powders obtained by spray drying. A pilot scale spray dryer with a feed flow of 20 L/h and an atomization speed of 28,000 rpm was used. The inlet and outlet air temperatures were from 180 to 80 °C, respectively. Yield, moisture content, water activity, hygroscopicity index, solubility time, volumetric density, stability diagrams, micrographs, and particle temperature were evaluated. The highest yields for blackberry extract were 75% with a concentration of 2.5% (w/v) Nopal mucilage, while raspberry extract yielded 65% with a concentration of 5% (w/v) Nopal mucilage. The increase in the concentration of the carrier agent presented an increase in the values of humidity, water activity, volumetric density, and solubility when Nopal mucilage was used as a carrier agent in both blackberry and raspberry extracts. Furthermore, when Aloe Vera mucilage was used as a carrier agent, these same values decreased with increasing concentration. The storage conditions of the powders obtained should be stored at temperatures below 20°C and water activities below 0.4. In addition, the stability diagrams show the particle conditions that should not be exceeded during spray drying.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"462-471"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132231161229","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this investigation was to evaluate the influence of two carrier agents, Nopal and Aloe Vera mucilage on the physicochemical properties and stability of blackberry and raspberry powders obtained by spray drying. A pilot scale spray dryer with a feed flow of 20 L/h and an atomization speed of 28,000 rpm was used. The inlet and outlet air temperatures were from 180 to 80 °C, respectively. Yield, moisture content, water activity, hygroscopicity index, solubility time, volumetric density, stability diagrams, micrographs, and particle temperature were evaluated. The highest yields for blackberry extract were 75% with a concentration of 2.5% (w/v) Nopal mucilage, while raspberry extract yielded 65% with a concentration of 5% (w/v) Nopal mucilage. The increase in the concentration of the carrier agent presented an increase in the values of humidity, water activity, volumetric density, and solubility when Nopal mucilage was used as a carrier agent in both blackberry and raspberry extracts. Furthermore, when Aloe Vera mucilage was used as a carrier agent, these same values decreased with increasing concentration. The storage conditions of the powders obtained should be stored at temperatures below 20°C and water activities below 0.4. In addition, the stability diagrams show the particle conditions that should not be exceeded during spray drying.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).