{"title":"Design of MR brake featuring tapered inner magnetic core","authors":"J. Sohn, J. Oh, Seung-bok Choi","doi":"10.1117/12.2084137","DOIUrl":null,"url":null,"abstract":"In this work, a new type of MR brake featuring tapered inner magnetic core is proposed and its braking performance is numerically evaluated. In order to achieve high braking torque with restricted size and weight of MR brake system, tapered inner magnetic core is designed and expands the area that the magnetic flux is passing by MR fluid-filled gap. The mathematical braking torque model of the proposed MR brake is derived based on the field-dependent Bingham rheological model of MR fluid. Finite element analysis is carried out to identify electromagnetic characteristics of the conventional and the proposed MR brake configuration. To demonstrate the superiority of the proposed MR brake, the braking torque of the proposed MR brake is numerically evaluated and compared with that of conventional MR brake model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2084137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, a new type of MR brake featuring tapered inner magnetic core is proposed and its braking performance is numerically evaluated. In order to achieve high braking torque with restricted size and weight of MR brake system, tapered inner magnetic core is designed and expands the area that the magnetic flux is passing by MR fluid-filled gap. The mathematical braking torque model of the proposed MR brake is derived based on the field-dependent Bingham rheological model of MR fluid. Finite element analysis is carried out to identify electromagnetic characteristics of the conventional and the proposed MR brake configuration. To demonstrate the superiority of the proposed MR brake, the braking torque of the proposed MR brake is numerically evaluated and compared with that of conventional MR brake model.