Mining Datasets for Molecular Subtyping in Cancer

Sally Yepes, M. M. Torres
{"title":"Mining Datasets for Molecular Subtyping in Cancer","authors":"Sally Yepes, M. M. Torres","doi":"10.4172/2153-0602.1000185","DOIUrl":null,"url":null,"abstract":"Given the heterogeneity in the clinical behavior of cancer patients with identical histopathological diagnosis, the search for unrecognized molecular subtypes, subtype-specific markers and the evaluation of their clinical-biological relevance are a necessity. This task is benefiting today from the high-throughput genomic technologies and free access to the datasets generated by the international genomic projects and the repositories of information. Machine learning strategies have proven to be useful in the identification of hidden trends in large datasets, contributing to the understanding of the molecular mechanisms and subtyping of cancer. However, the translation of new molecular subclasses and biomarkers into clinical settings requires their analytic validation and clinical trials to determine their clinical utility. Here, we provide an overview of the workflow to identify and confirm cancer subtypes, summarize a variety of methodological principles, and highlight representative studies. The generation of public big data on the most common malignancies is turning the molecular pathology into a database-driven discipline.","PeriodicalId":15630,"journal":{"name":"Journal of Data Mining in Genomics & Proteomics","volume":"6 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data Mining in Genomics & Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-0602.1000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given the heterogeneity in the clinical behavior of cancer patients with identical histopathological diagnosis, the search for unrecognized molecular subtypes, subtype-specific markers and the evaluation of their clinical-biological relevance are a necessity. This task is benefiting today from the high-throughput genomic technologies and free access to the datasets generated by the international genomic projects and the repositories of information. Machine learning strategies have proven to be useful in the identification of hidden trends in large datasets, contributing to the understanding of the molecular mechanisms and subtyping of cancer. However, the translation of new molecular subclasses and biomarkers into clinical settings requires their analytic validation and clinical trials to determine their clinical utility. Here, we provide an overview of the workflow to identify and confirm cancer subtypes, summarize a variety of methodological principles, and highlight representative studies. The generation of public big data on the most common malignancies is turning the molecular pathology into a database-driven discipline.
癌症分子分型的数据挖掘
鉴于具有相同组织病理学诊断的癌症患者临床行为的异质性,寻找未被识别的分子亚型、亚型特异性标记物并评估其临床生物学相关性是必要的。今天,这项任务得益于高通量基因组技术和免费获取国际基因组项目和信息库生成的数据集。事实证明,机器学习策略在识别大型数据集中隐藏的趋势方面非常有用,有助于理解癌症的分子机制和亚型。然而,将新的分子亚类和生物标志物转化为临床环境需要分析验证和临床试验来确定其临床效用。在这里,我们概述了识别和确认癌症亚型的工作流程,总结了各种方法学原则,并重点介绍了具有代表性的研究。关于最常见恶性肿瘤的公共大数据的产生正在把分子病理学变成一个数据库驱动的学科。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信