Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds

S. Rashmi, V. Venkatesha
{"title":"Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds","authors":"S. Rashmi, V. Venkatesha","doi":"10.1515/anly-2021-1018","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we aim to study a special type of metric called almost * {*} -η-Ricci soliton on the special class of contact pseudo-Riemannian manifold. First, we prove that a Kenmotsu pseudo-Riemannian metric as an * {*} -η-Ricci soliton is Einstein if either it is η-Einstein or the potential vector field V is an infinitesimal contact transformation. Further, we prove that if a Kenmotsu pseudo-Riemannian manifold admits an almost * {*} -η-Ricci soliton with a Reeb vector field leaving the scalar curvature invariant, then it is an Einstein manifold. Finally, we present an example of * {*} -η-Ricci solitons which illustrate our results.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"47 1","pages":"241 - 250"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-1018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we aim to study a special type of metric called almost * {*} -η-Ricci soliton on the special class of contact pseudo-Riemannian manifold. First, we prove that a Kenmotsu pseudo-Riemannian metric as an * {*} -η-Ricci soliton is Einstein if either it is η-Einstein or the potential vector field V is an infinitesimal contact transformation. Further, we prove that if a Kenmotsu pseudo-Riemannian manifold admits an almost * {*} -η-Ricci soliton with a Reeb vector field leaving the scalar curvature invariant, then it is an Einstein manifold. Finally, we present an example of * {*} -η-Ricci solitons which illustrate our results.
Kenmotsu伪黎曼流形上的几乎*-η-Ricci孤子
摘要本文研究了一类特殊接触伪黎曼流形上的一种特殊类型的度量——几乎* {*}-η-Ricci孤子。首先,我们证明了一个Kenmotsu伪riemanian度规作为一个* {*}-η-Ricci孤子是爱因斯坦,如果它是η-爱因斯坦或势向量场V是一个无穷小的接触变换。进一步证明了如果一个Kenmotsu伪黎曼流形存在一个几乎* {*}-η-Ricci孤子,且Reeb向量场保持标量曲率不变,那么它就是一个爱因斯坦流形。最后,我们给出了一个* {*}-η-Ricci孤子的例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信