Effects of Position of Exciton-Blocking Layer on Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes

Sang Ho Rhee, Chang Su Kim, Myungkwan Song, K. Chung, S. Ryu
{"title":"Effects of Position of Exciton-Blocking Layer on Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes","authors":"Sang Ho Rhee, Chang Su Kim, Myungkwan Song, K. Chung, S. Ryu","doi":"10.1149/2.0041410SSL","DOIUrl":null,"url":null,"abstract":"In this study, we systematically examined the effects of the position of the exciton- blocking layer (EBL) in blue phosphorescent organic light-emitting diodes. The EBL was located either in the front and/or the rear of the emission layer (EML), and its effects to the device performances and electroluminescence spectra were investigated. The width and location of the recombination zone related to the triplet exciton quenching occurred in the devices with/without a front- or rear-EBL resulted in an optical micro-cavity effect in the EL spectrum at approximately 500 nm. The EBLs provided the direct, extra path of charge carriers from the hole transport layer (HTL)/electron transport layer (ETL) to the ETL/HTL through EML, resulting that the device operating voltage did not increase. The device with both front- and rear-placed EBLs exhibited the highest device performance, as triplet exciton quenching did not occur in it at the interface between the HTL/ETL and the EML.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0041410SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this study, we systematically examined the effects of the position of the exciton- blocking layer (EBL) in blue phosphorescent organic light-emitting diodes. The EBL was located either in the front and/or the rear of the emission layer (EML), and its effects to the device performances and electroluminescence spectra were investigated. The width and location of the recombination zone related to the triplet exciton quenching occurred in the devices with/without a front- or rear-EBL resulted in an optical micro-cavity effect in the EL spectrum at approximately 500 nm. The EBLs provided the direct, extra path of charge carriers from the hole transport layer (HTL)/electron transport layer (ETL) to the ETL/HTL through EML, resulting that the device operating voltage did not increase. The device with both front- and rear-placed EBLs exhibited the highest device performance, as triplet exciton quenching did not occur in it at the interface between the HTL/ETL and the EML.
激子阻挡层位置对蓝色磷光有机发光二极管特性的影响
在本研究中,我们系统地研究了蓝磷光有机发光二极管中激子阻断层(EBL)位置的影响。研究了电子束位于发射层(EML)的前部和后部,对器件性能和电致发光光谱的影响。与三重态激子猝灭有关的复合带的宽度和位置导致了大约500 nm处的光学微腔效应。ebl为载流子从空穴输运层(HTL)/电子输运层(ETL)到ETL/HTL通过EML提供了直接的、额外的路径,导致器件工作电压没有增加。前后放置ebl的器件表现出最高的器件性能,因为在html /ETL和EML之间的接口处没有发生三重态激子猝灭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ECS Solid State Letters
ECS Solid State Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信