Penerapan Non-Linier Support Vector Machine pada Penggunaan Alat Kontrasepsi di Provinsi Maluku Utara

Muhamad Budiman Johra Johra
{"title":"Penerapan Non-Linier Support Vector Machine pada Penggunaan Alat Kontrasepsi di Provinsi Maluku Utara","authors":"Muhamad Budiman Johra Johra","doi":"10.15642/mantik.2018.4.2.137-142","DOIUrl":null,"url":null,"abstract":"The objective of BKKBN is to reduce the rate of population growth because the high population growth rate causes a high population quantity as well. According to the Departemen Kesehatan RI (2013), married women aged 15-49 years who are not use contraseption mostly in eastern Indonesia, one of them is Provinsi Maluku Utara. According to BKKBN Provinsi Maluku Utara, the birth rate increased from 57.4 to 57.9. This happens because many KB participants are drop out, contraceptive failure and side effects, the need for family planning is served 9.1 in 2007 to 8.5 in 2012 with a target of 5 in 2014. Therefore, it important to know determinant factors that affect women to use contraceptives. There are several methods in the classification, one of which is the Support Vector Machine (SVM). SVM has advantages over other classification methods because the Support Vector Machine not only minimizes errors in the trainset, but also has a high generalization capability. This is reflected in maximal margin selection. This study shows the Support Vector Machine can describe the decision of women to use contraception or not. The best kernel in this study is a radial base kernel with cost 1 and gamma 0.14286.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/mantik.2018.4.2.137-142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The objective of BKKBN is to reduce the rate of population growth because the high population growth rate causes a high population quantity as well. According to the Departemen Kesehatan RI (2013), married women aged 15-49 years who are not use contraseption mostly in eastern Indonesia, one of them is Provinsi Maluku Utara. According to BKKBN Provinsi Maluku Utara, the birth rate increased from 57.4 to 57.9. This happens because many KB participants are drop out, contraceptive failure and side effects, the need for family planning is served 9.1 in 2007 to 8.5 in 2012 with a target of 5 in 2014. Therefore, it important to know determinant factors that affect women to use contraceptives. There are several methods in the classification, one of which is the Support Vector Machine (SVM). SVM has advantages over other classification methods because the Support Vector Machine not only minimizes errors in the trainset, but also has a high generalization capability. This is reflected in maximal margin selection. This study shows the Support Vector Machine can describe the decision of women to use contraception or not. The best kernel in this study is a radial base kernel with cost 1 and gamma 0.14286.
BKKBN的目标是降低人口增长率,因为高人口增长率也会导致高人口数量。根据departteen Kesehatan RI(2013),印度尼西亚东部15-49岁的已婚妇女大多不使用避孕措施,其中一个是马鲁古乌塔拉省。根据BKKBN省马鲁库乌塔拉,出生率从57.4上升到57.9。发生这种情况是因为许多KB参与者退出,避孕失败和副作用,计划生育需求从2007年的9.1人增加到2012年的8.5人,2014年的目标是5人。因此,了解影响妇女使用避孕药具的决定因素非常重要。分类有几种方法,其中一种是支持向量机(SVM)。与其他分类方法相比,支持向量机的优点在于它不仅使训练集的误差最小化,而且具有很高的泛化能力。这反映在最大边际选择上。本研究表明,支持向量机可以描述女性是否使用避孕措施的决定。本研究中最好的核是代价为1,伽马为0.14286的径向基核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信