The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Cellular and molecular bioengineering Pub Date : 2022-12-26 eCollection Date: 2023-02-01 DOI:10.1007/s12195-022-00755-7
Annika Johnson, Samuel Reimer, Ryan Childres, Grace Cupp, Tia C L Kohs, Owen J T McCarty, Youngbok Abraham Kang
{"title":"The Applications and Challenges of the Development of <i>In Vitro</i> Tumor Microenvironment Chips.","authors":"Annika Johnson, Samuel Reimer, Ryan Childres, Grace Cupp, Tia C L Kohs, Owen J T McCarty, Youngbok Abraham Kang","doi":"10.1007/s12195-022-00755-7","DOIUrl":null,"url":null,"abstract":"<p><p>The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create <i>in vitro</i> microfluidic models called \"tumor chips\". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of <i>in vitro</i> tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 1","pages":"3-21"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842840/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-022-00755-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.

Abstract Image

开发体外肿瘤微环境芯片的应用与挑战。
肿瘤微环境(TME)在肿瘤发生、发展和耐药性方面起着至关重要但又难以捉摸的作用。为了更好地了解复杂的肿瘤微环境的病理生理学,人们采用了还原论的方法来创建被称为 "肿瘤芯片 "的体外微流控模型。在此,我们将回顾目前用于癌症研究的肿瘤芯片的制作过程、应用和局限性。肿瘤芯片具有实时观察、精确控制微环境因素(如基质和细胞成分)以及应用生理学相关流体剪切应力和扰动的能力。肿瘤芯片的应用包括药物筛选和毒性测试、给药方式评估以及免疫细胞和循环肿瘤细胞与原发肿瘤部位的转运和相互作用研究。目前,肿瘤芯片的实用性受到肿瘤生理细微差别再现能力的限制,这些细微差别包括细胞外基质的组成和硬度、细胞成分的异质性、缺氧梯度以及血液微环境中的血细胞和凝固体。克服这些挑战并提高体外肿瘤模型的生理相关性可为癌症研究提供强大的测试平台,并减少对动物和临床研究的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信