Identifying High-Risk Comorbidities Associated with Opioid Use Patterns Using Electronic Health Record Prescription Data.

Complex psychiatry Pub Date : 2022-09-01 Epub Date: 2022-06-02 DOI:10.1159/000525313
Mariela V Jennings, Hyunjoon Lee, Daniel B Rocha, Sevim B Bianchi, Brandon J Coombes, Richard C Crist, Annika B Faucon, Yirui Hu, Rachel L Kember, Travis T Mallard, Maria Niarchou, Melissa N Poulsen, Peter Straub, Richard D Urman, Colin G Walsh, Lea K Davis, Jordan W Smoller, Vanessa Troiani, Sandra Sanchez-Roige
{"title":"Identifying High-Risk Comorbidities Associated with Opioid Use Patterns Using Electronic Health Record Prescription Data.","authors":"Mariela V Jennings, Hyunjoon Lee, Daniel B Rocha, Sevim B Bianchi, Brandon J Coombes, Richard C Crist, Annika B Faucon, Yirui Hu, Rachel L Kember, Travis T Mallard, Maria Niarchou, Melissa N Poulsen, Peter Straub, Richard D Urman, Colin G Walsh, Lea K Davis, Jordan W Smoller, Vanessa Troiani, Sandra Sanchez-Roige","doi":"10.1159/000525313","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Opioid use disorders (OUDs) constitute a major public health issue, and we urgently need alternative methods for characterizing risk for OUD. Electronic health records (EHRs) are useful tools for understanding complex medical phenotypes but have been underutilized for OUD because of challenges related to underdiagnosis, binary diagnostic frameworks, and minimally characterized reference groups. As a first step in addressing these challenges, a new paradigm is warranted that characterizes risk for opioid prescription misuse on a continuous scale of severity, i.e., as a continuum.</p><p><strong>Methods: </strong>Across sites within the PsycheMERGE network, we extracted prescription opioid data and diagnoses that co-occur with OUD (including psychiatric and substance use disorders, pain-related diagnoses, HIV, and hepatitis C) for over 2.6 million patients across three health registries (Vanderbilt University Medical Center, Mass General Brigham, Geisinger) between 2005 and 2018. We defined three groups based on levels of opioid exposure: no prescriptions, minimal exposure, and chronic exposure and then compared the comorbidity profiles of these groups to the full registries and to those with OUD diagnostic codes.</p><p><strong>Results: </strong>Our results confirm that EHR data reflects known higher prevalence of substance use disorders, psychiatric disorders, medical, and pain diagnoses in patients with OUD diagnoses and chronic opioid use. Comorbidity profiles that distinguish opioid exposure are strikingly consistent across large health systems, indicating the phenotypes described in this new quantitative framework are robust to health systems differences.</p><p><strong>Conclusion: </strong>This work indicates that EHR prescription opioid data can serve as a platform to characterize complex risk markers for OUD using existing data.</p>","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"8 1-2","pages":"47-55"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669950/pdf/cxp-0008-0047.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000525313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Opioid use disorders (OUDs) constitute a major public health issue, and we urgently need alternative methods for characterizing risk for OUD. Electronic health records (EHRs) are useful tools for understanding complex medical phenotypes but have been underutilized for OUD because of challenges related to underdiagnosis, binary diagnostic frameworks, and minimally characterized reference groups. As a first step in addressing these challenges, a new paradigm is warranted that characterizes risk for opioid prescription misuse on a continuous scale of severity, i.e., as a continuum.

Methods: Across sites within the PsycheMERGE network, we extracted prescription opioid data and diagnoses that co-occur with OUD (including psychiatric and substance use disorders, pain-related diagnoses, HIV, and hepatitis C) for over 2.6 million patients across three health registries (Vanderbilt University Medical Center, Mass General Brigham, Geisinger) between 2005 and 2018. We defined three groups based on levels of opioid exposure: no prescriptions, minimal exposure, and chronic exposure and then compared the comorbidity profiles of these groups to the full registries and to those with OUD diagnostic codes.

Results: Our results confirm that EHR data reflects known higher prevalence of substance use disorders, psychiatric disorders, medical, and pain diagnoses in patients with OUD diagnoses and chronic opioid use. Comorbidity profiles that distinguish opioid exposure are strikingly consistent across large health systems, indicating the phenotypes described in this new quantitative framework are robust to health systems differences.

Conclusion: This work indicates that EHR prescription opioid data can serve as a platform to characterize complex risk markers for OUD using existing data.

使用电子健康记录处方数据识别与阿片类药物使用模式相关的高危合并症
阿片类药物使用障碍(OUDs)构成了一个重大的公共卫生问题,我们迫切需要替代方法来表征OUD的风险。电子健康记录(EHRs)是了解复杂医学表型的有用工具,但由于诊断不足、二元诊断框架和特征最少的参考组相关的挑战,对OUD的利用不足。作为应对这些挑战的第一步,有必要建立一个新的范式,以连续的严重程度来表征阿片类药物处方滥用的风险,即作为一个连续体。方法:在PsycheMERGE网络的各个站点,我们提取了2005年至2018年间三个健康登记处(范德比尔特大学医学中心、麻省总医院布里格姆、盖辛格)260多万名患者的处方阿片类药物数据和与OUD共同发生的诊断(包括精神和物质使用障碍、疼痛相关诊断、艾滋病毒和丙型肝炎)。我们根据阿片类药物暴露水平定义了三组:无处方、最小暴露和慢性暴露,然后将这些组的合并症概况与完整注册表和具有OUD诊断代码的人群进行比较。结果:我们的研究结果证实,EHR数据反映了已知的物质使用障碍、精神障碍、医学诊断和疼痛诊断在OUD诊断和慢性阿片类药物使用患者中的较高患病率。区分阿片类药物暴露的共病概况在大型卫生系统中是惊人一致的,表明在这个新的定量框架中描述的表型对卫生系统差异是稳健的。结论:这项工作表明,EHR处方阿片类药物数据可以作为利用现有数据表征OUD复杂风险标志物的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信