Systematic salt tolerance-related physiological mechanisms of wild soybean and their role in the photosynthetic activity and Na+ distribution of grafted soybean plants.
{"title":"Systematic salt tolerance-related physiological mechanisms of wild soybean and their role in the photosynthetic activity and Na<sup>+</sup> distribution of grafted soybean plants.","authors":"Z C Xue, Y Wang, J Liu","doi":"10.32615/ps.2022.030","DOIUrl":null,"url":null,"abstract":"<p><p>Systematic salt tolerance-related physiological mechanisms in roots and shoots of halophyte Dongying wild soybean have not yet been thoroughly studied. In this study, photosynthesis, modulated 820-nm reflection, chlorophyll <i>a</i> fluorescence, and Na<sup>+</sup> distribution in cultivated (<i>G</i> <sub>mc</sub>) and wild (<i>G</i> <sub>sw</sub>) soybean leaves of grafted soybean plants were investigated after NaCl treatment. Results showed that the decreases in photosynthetic rate, performance index, active P<sub>700</sub> content, and plastocyanin reduction were significantly greater in the <i>G</i> <sub>sw</sub> leaves than those in the <i>G</i> <sub>mc</sub> leaves. The observed increases in the Na<sup>+</sup> concentration in the <i>G</i> <sub>sw</sub> leaves were likely responsible for the severe decrease in the photosynthetic activity of grafted plants. We suggest that Na<sup>+</sup> accumulation in <i>G</i> <sub>sw</sub> roots, which prevents the transport of Na<sup>+</sup> from the roots to the shoots, effectively maintains the concentration of Na<sup>+</sup> at a comparatively low level in the leaves to prevent the destruction of the photosynthetic apparatus by salt.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"59 1","pages":"400-407"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2022.030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Systematic salt tolerance-related physiological mechanisms in roots and shoots of halophyte Dongying wild soybean have not yet been thoroughly studied. In this study, photosynthesis, modulated 820-nm reflection, chlorophyll a fluorescence, and Na+ distribution in cultivated (Gmc) and wild (Gsw) soybean leaves of grafted soybean plants were investigated after NaCl treatment. Results showed that the decreases in photosynthetic rate, performance index, active P700 content, and plastocyanin reduction were significantly greater in the Gsw leaves than those in the Gmc leaves. The observed increases in the Na+ concentration in the Gsw leaves were likely responsible for the severe decrease in the photosynthetic activity of grafted plants. We suggest that Na+ accumulation in Gsw roots, which prevents the transport of Na+ from the roots to the shoots, effectively maintains the concentration of Na+ at a comparatively low level in the leaves to prevent the destruction of the photosynthetic apparatus by salt.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.