{"title":"Task Interruption and Control Recovery Strategies After Take-Over Requests Emphasize Need for Measures of Situation Awareness","authors":"T. Vogelpohl, Franziska Gehlmann, M. Vollrath","doi":"10.1177/0018720819866976","DOIUrl":null,"url":null,"abstract":"Objective Our objective was to determine whether there is a need to go beyond measures of automation deactivation time to understand the transition to manual driving after take-over requests (TORs) using the example of office tasks as nondriving-related tasks (NDRTs). Background Office tasks are likely NDRTs during automated commutes to/from work. Complex tasks can influence how manual control and visual attention is recovered after TORs. Method N = 51 participants in a driving simulator performed either one of two office tasks or no task (between subjects). We recorded reaction times in a high-urgency and low-urgency scenario (within subjects) and analyzed task interruption strategies. Results 90% of the participants who performed an NDRT deactivated the automation after 7 to 8 s. However, 90% of the same drivers looked at the side mirror for the first time only after 11 to 14 s. Drivers with office tasks either interrupted the tasks sequentially or in parallel. Strategies were not adapted to the take-over situation or the task but appeared to be due to individual preferences. Conclusion Drivers engaged in NDRTs may neglect lower priority subtasks after a TOR, such as mirror checking. Therefore, there is a need to go beyond measures of automation deactivation time to understand the transition to manual driving. Using analyses of attentional dynamics during take-over situations may enhance the safety of future car-driver handover assistance systems. Application If low driver availability is detected, TORs should only be used as a fallback option if sufficient time and adaptive driver support can be provided.","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"50 1","pages":"1190 - 1211"},"PeriodicalIF":2.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0018720819866976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 17
Abstract
Objective Our objective was to determine whether there is a need to go beyond measures of automation deactivation time to understand the transition to manual driving after take-over requests (TORs) using the example of office tasks as nondriving-related tasks (NDRTs). Background Office tasks are likely NDRTs during automated commutes to/from work. Complex tasks can influence how manual control and visual attention is recovered after TORs. Method N = 51 participants in a driving simulator performed either one of two office tasks or no task (between subjects). We recorded reaction times in a high-urgency and low-urgency scenario (within subjects) and analyzed task interruption strategies. Results 90% of the participants who performed an NDRT deactivated the automation after 7 to 8 s. However, 90% of the same drivers looked at the side mirror for the first time only after 11 to 14 s. Drivers with office tasks either interrupted the tasks sequentially or in parallel. Strategies were not adapted to the take-over situation or the task but appeared to be due to individual preferences. Conclusion Drivers engaged in NDRTs may neglect lower priority subtasks after a TOR, such as mirror checking. Therefore, there is a need to go beyond measures of automation deactivation time to understand the transition to manual driving. Using analyses of attentional dynamics during take-over situations may enhance the safety of future car-driver handover assistance systems. Application If low driver availability is detected, TORs should only be used as a fallback option if sufficient time and adaptive driver support can be provided.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.