{"title":"Fabrication of sports mouthguards using a semi-digital workflow with 4D-printing technology.","authors":"Tamaki Hada, Yuriko Komagamine, Manabu Kanazawa, Shunsuke Minakuchi","doi":"10.2186/jpr.JPR_D_22_00274","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose This technical procedure report explains the fabrication protocol for a newly developed 4D-printed sports mouthguard (MG) based on 4D-printing technology.Methods An intraoral scanner was used to scan a maxillary arch model. A two-layer sports MG was designed based on the scanned model using computer-aided design software and output in a standard tessellation language file format. Two types of filament materials were used for the MG material: a thermoplastic shape memory polyurethane elastomer with a unique glass transition temperature for the external layer and a thermoplastic elastomer for the internal layer. Both MGs were printed using a fused deposition modeling 3D printer and assembled using adhesives after trimming the support material. To confirm the shape-memory performance of the fabricated 4D-printed MG, a deviation analysis was performed by superimposing the internal surface data of the fabricated MG and the MG whose shape was recovered. The distance between the data obtained by deviation analysis was calculated, and the root mean square error value (mm) was determined.Conclusions The 4D-printing technology simplifies the complex processes required with conventional methods. It also overcomes the issues of conventional and 3D-printed MGs, such as the reduced fitting accuracy caused by deformation, because this technology employs shape memory materials.</p>","PeriodicalId":16887,"journal":{"name":"Journal of prosthodontic research","volume":" ","pages":"181-185"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of prosthodontic research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_22_00274","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This technical procedure report explains the fabrication protocol for a newly developed 4D-printed sports mouthguard (MG) based on 4D-printing technology.Methods An intraoral scanner was used to scan a maxillary arch model. A two-layer sports MG was designed based on the scanned model using computer-aided design software and output in a standard tessellation language file format. Two types of filament materials were used for the MG material: a thermoplastic shape memory polyurethane elastomer with a unique glass transition temperature for the external layer and a thermoplastic elastomer for the internal layer. Both MGs were printed using a fused deposition modeling 3D printer and assembled using adhesives after trimming the support material. To confirm the shape-memory performance of the fabricated 4D-printed MG, a deviation analysis was performed by superimposing the internal surface data of the fabricated MG and the MG whose shape was recovered. The distance between the data obtained by deviation analysis was calculated, and the root mean square error value (mm) was determined.Conclusions The 4D-printing technology simplifies the complex processes required with conventional methods. It also overcomes the issues of conventional and 3D-printed MGs, such as the reduced fitting accuracy caused by deformation, because this technology employs shape memory materials.
期刊介绍:
Journal of Prosthodontic Research is published 4 times annually, in January, April, July, and October, under supervision by the Editorial Board of Japan Prosthodontic Society, which selects all materials submitted for publication.
Journal of Prosthodontic Research originated as an official journal of Japan Prosthodontic Society. It has recently developed a long-range plan to become the most prestigious Asian journal of dental research regarding all aspects of oral and occlusal rehabilitation, fixed/removable prosthodontics, oral implantology and applied oral biology and physiology. The Journal will cover all diagnostic and clinical management aspects necessary to reestablish subjective and objective harmonious oral aesthetics and function.
The most-targeted topics:
1) Clinical Epidemiology and Prosthodontics
2) Fixed/Removable Prosthodontics
3) Oral Implantology
4) Prosthodontics-Related Biosciences (Regenerative Medicine, Bone Biology, Mechanobiology, Microbiology/Immunology)
5) Oral Physiology and Biomechanics (Masticating and Swallowing Function, Parafunction, e.g., bruxism)
6) Orofacial Pain and Temporomandibular Disorders (TMDs)
7) Adhesive Dentistry / Dental Materials / Aesthetic Dentistry
8) Maxillofacial Prosthodontics and Dysphagia Rehabilitation
9) Digital Dentistry
Prosthodontic treatment may become necessary as a result of developmental or acquired disturbances in the orofacial region, of orofacial trauma, or of a variety of dental and oral diseases and orofacial pain conditions.
Reviews, Original articles, technical procedure and case reports can be submitted. Letters to the Editor commenting on papers or any aspect of Journal of Prosthodontic Research are welcomed.