A regularity criterion for the 3D generalized MHD system involving partial components

IF 0.5 4区 数学 Q3 MATHEMATICS
Jinhuan Wang, W. Tan, Yongsheng Nie
{"title":"A regularity criterion for the 3D generalized MHD system involving partial components","authors":"Jinhuan Wang, W. Tan, Yongsheng Nie","doi":"10.1063/5.0143742","DOIUrl":null,"url":null,"abstract":"This paper is devoted to establishing the global regularity involving magnetic fields and partial components of the velocity for the 3D generalized magnetohydrodynamic equations with dissipation terms −(−Δ)αu and −(−Δ)βb. We assume 1≤α=β≤32 and prove that if b,u3∈Lw(0,T;Lq(R3)) with 2αw+3q≤3(2α−1)4+3(1−ϵ)4q, 3+ϵ2α−1<q≤∞, and 0<ϵ≤13, then the local strong solution is smooth on [0, T].","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"51 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0143742","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to establishing the global regularity involving magnetic fields and partial components of the velocity for the 3D generalized magnetohydrodynamic equations with dissipation terms −(−Δ)αu and −(−Δ)βb. We assume 1≤α=β≤32 and prove that if b,u3∈Lw(0,T;Lq(R3)) with 2αw+3q≤3(2α−1)4+3(1−ϵ)4q, 3+ϵ2α−1
包含部分分量的三维广义MHD系统的正则性判据
本文建立了具有−(−Δ)αu和−(−Δ)βb耗散项的三维广义磁流体动力学方程中涉及磁场和速度部分分量的全局正则性。我们假设1≤α=β≤32,并证明如果b,u3∈Lw(0,T;Lq(R3))与2αw+3q≤3(2α−1)4+3(1−λ)4q, 3+ϵ2α−1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信