$\boldsymbol {C}^{*}$ -ALGEBRAS FROM $\boldsymbol {K}$ GROUP REPRESENTATIONS

IF 0.5 4区 数学 Q3 MATHEMATICS
V. Deaconu
{"title":"$\\boldsymbol {C}^{*}$\n -ALGEBRAS FROM \n$\\boldsymbol {K}$\n GROUP REPRESENTATIONS","authors":"V. Deaconu","doi":"10.1017/S1446788721000392","DOIUrl":null,"url":null,"abstract":"Abstract We introduce certain \n$C^*$\n -algebras and k-graphs associated to k finite-dimensional unitary representations \n$\\rho _1,\\ldots ,\\rho _k$\n of a compact group G. We define a higher rank Doplicher-Roberts algebra \n$\\mathcal {O}_{\\rho _1,\\ldots ,\\rho _k}$\n , constructed from intertwiners of tensor powers of these representations. Under certain conditions, we show that this \n$C^*$\n -algebra is isomorphic to a corner in the \n$C^*$\n -algebra of a row-finite rank k graph \n$\\Lambda $\n with no sources. For G finite and \n$\\rho _i$\n faithful of dimension at least two, this graph is irreducible, it has vertices \n$\\hat {G}$\n and the edges are determined by k commuting matrices obtained from the character table of the group. We illustrate this with some examples when \n$\\mathcal {O}_{\\rho _1,\\ldots ,\\rho _k}$\n is simple and purely infinite, and with some K-theory computations.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"34 1","pages":"318 - 338"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788721000392","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We introduce certain $C^*$ -algebras and k-graphs associated to k finite-dimensional unitary representations $\rho _1,\ldots ,\rho _k$ of a compact group G. We define a higher rank Doplicher-Roberts algebra $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ , constructed from intertwiners of tensor powers of these representations. Under certain conditions, we show that this $C^*$ -algebra is isomorphic to a corner in the $C^*$ -algebra of a row-finite rank k graph $\Lambda $ with no sources. For G finite and $\rho _i$ faithful of dimension at least two, this graph is irreducible, it has vertices $\hat {G}$ and the edges are determined by k commuting matrices obtained from the character table of the group. We illustrate this with some examples when $\mathcal {O}_{\rho _1,\ldots ,\rho _k}$ is simple and purely infinite, and with some K-theory computations.
$\boldsymbol {C}^{*}$ -ALGEBRAS FROM $\boldsymbol {K}$群表示
摘要:我们引入了紧群g的k个有限维酉表示$\rho _1,\ldots ,\rho _k$相关的$C^*$ -代数和k-图。我们定义了一个高阶的多普里切-罗伯茨代数$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$,它由这些表示的张量幂的交织构成。在一定条件下,我们证明了该$C^*$ -代数与无源的行有限秩k图$\Lambda $的$C^*$ -代数中的一个角是同构的。对于G有限且至少为2维的$\rho _i$忠实值,该图不可约,它有顶点$\hat {G}$,其边由从群的特征表中得到的k个交换矩阵确定。我们用一些例子来说明这一点,当$\mathcal {O}_{\rho _1,\ldots ,\rho _k}$是简单和纯无限的,并与一些k理论计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信