{"title":"A magnetically enhanced 3-electrode wireless micro-geiger counter","authors":"C. K. Eun, T. Fung, B. Mitra, Y. Gianchandani","doi":"10.1109/MEMSYS.2007.4433078","DOIUrl":null,"url":null,"abstract":"This paper explores a 3-electrode micromachined Geiger counter utilizing a high impedance (floating) electrode to control discharge energy, and its impact on sensitivity and response time. Permanent magnets in a sandwich configuration are used to enhance RF transmission from micro-discharges. Initially, weak (field-emission) leakage current charges the floating electrode capacitor (CPap1.1 pF) to a high voltage through the charging gap (between floating electrode and anode). When beta radiation initiates a micro-discharge in the sensing gap (between floating electrode and cathode), CP dissipates through the low impedance path, lowering the voltage and quickly quenching the discharge. Permanent magnets, positioned perpendicular to the discharge path, increase the efficiency of electron-ion collisions and enhance the consequent RF transmission. Experiments conducted in a neon/air ambient with 90Sr (0.1 muCi) showed a 10times-100times SNR improvement for the 3-electrode design over a similar 2-electrode design that does not utilize the floating electrode. Results also showed a significant increase in high frequency components in the presence of a magnetic field.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"6 1","pages":"599-602"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper explores a 3-electrode micromachined Geiger counter utilizing a high impedance (floating) electrode to control discharge energy, and its impact on sensitivity and response time. Permanent magnets in a sandwich configuration are used to enhance RF transmission from micro-discharges. Initially, weak (field-emission) leakage current charges the floating electrode capacitor (CPap1.1 pF) to a high voltage through the charging gap (between floating electrode and anode). When beta radiation initiates a micro-discharge in the sensing gap (between floating electrode and cathode), CP dissipates through the low impedance path, lowering the voltage and quickly quenching the discharge. Permanent magnets, positioned perpendicular to the discharge path, increase the efficiency of electron-ion collisions and enhance the consequent RF transmission. Experiments conducted in a neon/air ambient with 90Sr (0.1 muCi) showed a 10times-100times SNR improvement for the 3-electrode design over a similar 2-electrode design that does not utilize the floating electrode. Results also showed a significant increase in high frequency components in the presence of a magnetic field.