Study of exclusively focused on translational aspects of praseodymium nanoparticles drug delivery under super contorted tubular polar areas of magnetic fields as optothermal human gum cancer cells, tissues and tumors treatment technique under synchrotron radiation

A. Heidari, K. Schmitt, M. Henderson, E. Besana
{"title":"Study of exclusively focused on translational aspects of praseodymium nanoparticles drug delivery under super contorted tubular polar areas of magnetic fields as optothermal human gum cancer cells, tissues and tumors treatment technique under synchrotron radiation","authors":"A. Heidari, K. Schmitt, M. Henderson, E. Besana","doi":"10.15761/DOMR.1000344","DOIUrl":null,"url":null,"abstract":"In the current study, thermoplasmonic characteristics of Praseodymium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Praseodymium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Praseodymium nanoparticles by solving heat equation. The obtained results show that Praseodymium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.","PeriodicalId":10996,"journal":{"name":"Dental, Oral and Maxillofacial Research","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental, Oral and Maxillofacial Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15761/DOMR.1000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In the current study, thermoplasmonic characteristics of Praseodymium nanoparticles with spherical, core-shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Praseodymium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Praseodymium nanoparticles by solving heat equation. The obtained results show that Praseodymium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.
本研究专门研究了平移方面的镨纳米粒子在超扭曲管状极区磁场下作为光热同步辐射下治疗人牙龈癌细胞、组织和肿瘤的技术
本文研究了球形、核壳和棒状镨纳米粒子的热等离子体特性。为了研究这些特性,采用三维有限元方法模拟了同步辐射发射作为光束能量的函数与镨纳米粒子的相互作用。首先计算了吸收和消光截面。然后,通过求解热方程,计算了镨纳米粒子中同步辐射辐射引起的温度升高与光束能量吸收的关系。所获得的结果表明,镨纳米棒是更合适的选择,用于光热治疗人类癌细胞、组织和肿瘤的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信