Using an Articulated Industrial Robot to Perform Conformal Deposition With Mesoscale Features

IF 1 Q4 ENGINEERING, MANUFACTURING
Y. Cai, P. Bhatt, Hangbo Zhao, Satyandra K. Gupta
{"title":"Using an Articulated Industrial Robot to Perform Conformal Deposition With Mesoscale Features","authors":"Y. Cai, P. Bhatt, Hangbo Zhao, Satyandra K. Gupta","doi":"10.1115/msec2022-85950","DOIUrl":null,"url":null,"abstract":"\n Six Degrees of Freedom (DOF) robotic manipulators can use non-planar layers to deposit materials in additive manufacturing. Conformal material deposition requires accurately positioning and orienting the deposition tool on non-planar surfaces. Using industrial manipulators to move the deposition tool enables 6 DOF motion and avoids collision between the tool and the pre-existing substrate. Regular articulated industrial robots have high repeatability but do not exhibit high accuracy. Therefore, performing printing that involves small features becomes challenging. In this paper, we present advances in non-planar surface registration with respect to the robot frame, deposition tool calibration, and gap compensation scheme to enable accurate positioning of the tool tip with respect to the non-planar substrate. This enables us to maintain an accurately controlled gap between the tool tip and the underlying surface to allow printing of mesoscale features on curved surfaces. We test the efficacy of the proposed approach by printing a single layer of ink patterns with approximately 130 μm line width on spherical (radius < 1 cm), cylindrical, and planar substrates. We also demonstrate the capability of changing tool orientation enabled by the 6 DOF robotic manipulator and show that adjusting tool orientation is critical in enabling conformal printing on highly curved surfaces. Finally, the gap variation is characterized and accurate control of the gap is demonstrated.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Six Degrees of Freedom (DOF) robotic manipulators can use non-planar layers to deposit materials in additive manufacturing. Conformal material deposition requires accurately positioning and orienting the deposition tool on non-planar surfaces. Using industrial manipulators to move the deposition tool enables 6 DOF motion and avoids collision between the tool and the pre-existing substrate. Regular articulated industrial robots have high repeatability but do not exhibit high accuracy. Therefore, performing printing that involves small features becomes challenging. In this paper, we present advances in non-planar surface registration with respect to the robot frame, deposition tool calibration, and gap compensation scheme to enable accurate positioning of the tool tip with respect to the non-planar substrate. This enables us to maintain an accurately controlled gap between the tool tip and the underlying surface to allow printing of mesoscale features on curved surfaces. We test the efficacy of the proposed approach by printing a single layer of ink patterns with approximately 130 μm line width on spherical (radius < 1 cm), cylindrical, and planar substrates. We also demonstrate the capability of changing tool orientation enabled by the 6 DOF robotic manipulator and show that adjusting tool orientation is critical in enabling conformal printing on highly curved surfaces. Finally, the gap variation is characterized and accurate control of the gap is demonstrated.
利用关节式工业机器人进行具有中尺度特征的保形沉积
在增材制造中,六自由度机械臂可以使用非平面层沉积材料。保形材料沉积需要在非平面表面上精确定位和定向沉积工具。使用工业机械手移动沉积工具可以实现6自由度运动,并避免工具与预先存在的基板之间的碰撞。常规铰接式工业机器人重复性高,但精度不高。因此,执行涉及小功能的打印变得具有挑战性。在本文中,我们介绍了关于机器人框架的非平面表面配准,沉积工具校准和间隙补偿方案的进展,以实现刀具尖端相对于非平面基底的精确定位。这使我们能够在工具尖端和下表面之间保持精确控制的间隙,从而允许在曲面上打印中尺度特征。我们通过在球形(半径< 1 cm)、圆柱形和平面基板上印刷约130 μm线宽的单层油墨图案来测试所提出方法的有效性。我们还展示了通过6自由度机器人操纵器改变刀具方向的能力,并表明调整刀具方向对于在高曲面上实现保形打印至关重要。最后,对间隙变化进行了表征,并对间隙的精确控制进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信