Federated machine learning for a facilitated implementation of Artificial Intelligence in healthcare - a proof of concept study for the prediction of coronary artery calcification scores.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Journal of Integrative Bioinformatics Pub Date : 2022-09-05 eCollection Date: 2022-12-01 DOI:10.1515/jib-2022-0032
Justus Wolff, Julian Matschinske, Dietrich Baumgart, Anne Pytlik, Andreas Keck, Arunakiry Natarajan, Claudio E von Schacky, Josch K Pauling, Jan Baumbach
{"title":"Federated machine learning for a facilitated implementation of Artificial Intelligence in healthcare - a proof of concept study for the prediction of coronary artery calcification scores.","authors":"Justus Wolff, Julian Matschinske, Dietrich Baumgart, Anne Pytlik, Andreas Keck, Arunakiry Natarajan, Claudio E von Schacky, Josch K Pauling, Jan Baumbach","doi":"10.1515/jib-2022-0032","DOIUrl":null,"url":null,"abstract":"<p><p>The implementation of Artificial Intelligence (AI) still faces significant hurdles and one key factor is the access to data. One approach that could support that is federated machine learning (FL) since it allows for privacy preserving data access. For this proof of concept, a prediction model for coronary artery calcification scores (CACS) has been applied. The FL was trained based on the data in the different institutions, while the centralized machine learning model was trained on one allocation of data. Both algorithms predict patients with risk scores ≥5 based on age, biological sex, waist circumference, dyslipidemia and HbA1c. The centralized model yields a sensitivity of c. 66% and a specificity of c. 70%. The FL slightly outperforms that with a sensitivity of 67% while slightly underperforming it with a specificity of 69%. It could be demonstrated that CACS prediction is feasible via both, a centralized and an FL approach, and that both show very comparable accuracy. In order to increase accuracy, additional and a higher volume of patient data is required and for that FL is utterly necessary. The developed \"CACulator\" serves as proof of concept, is available as research tool and shall support future research to facilitate AI implementation.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9800042/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2022-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

The implementation of Artificial Intelligence (AI) still faces significant hurdles and one key factor is the access to data. One approach that could support that is federated machine learning (FL) since it allows for privacy preserving data access. For this proof of concept, a prediction model for coronary artery calcification scores (CACS) has been applied. The FL was trained based on the data in the different institutions, while the centralized machine learning model was trained on one allocation of data. Both algorithms predict patients with risk scores ≥5 based on age, biological sex, waist circumference, dyslipidemia and HbA1c. The centralized model yields a sensitivity of c. 66% and a specificity of c. 70%. The FL slightly outperforms that with a sensitivity of 67% while slightly underperforming it with a specificity of 69%. It could be demonstrated that CACS prediction is feasible via both, a centralized and an FL approach, and that both show very comparable accuracy. In order to increase accuracy, additional and a higher volume of patient data is required and for that FL is utterly necessary. The developed "CACulator" serves as proof of concept, is available as research tool and shall support future research to facilitate AI implementation.

Abstract Image

Abstract Image

Abstract Image

联合机器学习促进人工智能在医疗保健领域的应用--冠状动脉钙化评分预测概念验证研究。
人工智能(AI)的实施仍然面临着巨大的障碍,其中一个关键因素就是数据的访问。联合机器学习(FL)是支持这一目标的一种方法,因为它允许保护隐私的数据访问。在这一概念验证中,应用了冠状动脉钙化评分(CACS)预测模型。FL 根据不同机构的数据进行训练,而集中式机器学习模型则根据一个数据分配进行训练。两种算法都能根据年龄、生理性别、腰围、血脂异常和 HbA1c 预测风险分数≥5 的患者。集中模型的灵敏度约为 66%,特异度约为 70%。FL 的灵敏度为 67%,略高于集中模型,而特异度为 69%,略低于集中模型。这表明,通过集中式方法和 FL 方法进行 CACS 预测是可行的,而且两者的准确性非常接近。为了提高准确性,需要更多和更大容量的患者数据,因此 FL 是完全必要的。所开发的 "CACulator "可作为概念验证和研究工具,并将支持未来的研究,以促进人工智能的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信