Prediction interval estimation of 10 second fluctuation of PV output with just-in-time modeling

Nao Kumekawa, Hayato Honma, S. Wakao
{"title":"Prediction interval estimation of 10 second fluctuation of PV output with just-in-time modeling","authors":"Nao Kumekawa, Hayato Honma, S. Wakao","doi":"10.1109/PVSC.2016.7749937","DOIUrl":null,"url":null,"abstract":"The Output of photovoltaic (PV) systems depends on weather conditions. Therefore if there is a large introduction of PV systems, the power quality in the distribution system will be affected. One effective solution for this problem is to predict PV output. Although the need for prediction information for short period fluctuation is increasing, it is difficult to directly predict a steep fluctuation on the second time scale. For the prediction information of PV output, we propose the estimation of the prediction interval of the fluctuation widths on a 10 second scale. In this paper, we carry out the prediction by using the conventional method, with one-dimensional kernel density estimation, and the proposed method, with two-dimensional kernel density estimation. Then, we discuss the effectiveness of the proposed method based on several numerical indexes.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":"42 1","pages":"1825-1830"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7749937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Output of photovoltaic (PV) systems depends on weather conditions. Therefore if there is a large introduction of PV systems, the power quality in the distribution system will be affected. One effective solution for this problem is to predict PV output. Although the need for prediction information for short period fluctuation is increasing, it is difficult to directly predict a steep fluctuation on the second time scale. For the prediction information of PV output, we propose the estimation of the prediction interval of the fluctuation widths on a 10 second scale. In this paper, we carry out the prediction by using the conventional method, with one-dimensional kernel density estimation, and the proposed method, with two-dimensional kernel density estimation. Then, we discuss the effectiveness of the proposed method based on several numerical indexes.
基于实时模型的光伏输出10秒波动预测区间估计
光伏(PV)系统的输出取决于天气条件。因此,如果大量引进光伏系统,将会影响配电系统的电能质量。这个问题的一个有效解决方案是预测PV输出。虽然对短期波动的预测信息的需求在增加,但直接预测第二个时间尺度上的急剧波动是困难的。对于光伏输出的预测信息,我们提出了10秒尺度下波动宽度的预测区间估计。本文分别采用传统的一维核密度估计方法和本文提出的二维核密度估计方法进行预测。然后,基于几个数值指标,讨论了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信