Analysis of terahertz zero bias detectors by using a triple-barrier resonant tunneling diode integrated with a self-complementary bow-tie antenna

M. Suhara, S. Takahagi, K. Asakawa, T. Okazaki, M. Nakamura, S. Yamashita, Y. Itagaki, M. Saito, A. Tchegho, G. Keller, A. Poloczek, W. Prost, F. Tegude
{"title":"Analysis of terahertz zero bias detectors by using a triple-barrier resonant tunneling diode integrated with a self-complementary bow-tie antenna","authors":"M. Suhara, S. Takahagi, K. Asakawa, T. Okazaki, M. Nakamura, S. Yamashita, Y. Itagaki, M. Saito, A. Tchegho, G. Keller, A. Poloczek, W. Prost, F. Tegude","doi":"10.1109/DRC.2012.6256934","DOIUrl":null,"url":null,"abstract":"Recently, heavy emitter doping rather than decreasing the barrier thickness has boosted the peak current density of resonant tunneling diodes (RTDs) above 1,000 kA/cm2. Based on this achievement very mature InP-based RTD with current densities above 500 kA/cm2 are nowadays the leading solid-state THz device [1, 2]. Here, we show that even triple-barrier RTD (TBRTD) devices now reach a current density in excess of 250 kA/cm2 making this element ideally suited for rectification [3] but now at THz frequencies. Figure 1 is the state of art of THz detection sensitivity of previously reported zero bias detectors. Focusing on such zero bias broadband THz detection, we have also been studying on a design policy for a μm-sized on-chip self-complementally antenna and especially we have reported basic performances of a bow-tie antenna[4,5] integrated with a conventional homogeneous semiconductor mesa structure. However, it was still limited studies considering neither of actual nonlinear devices and peripheral circuits.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"23 1","pages":"77-78"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently, heavy emitter doping rather than decreasing the barrier thickness has boosted the peak current density of resonant tunneling diodes (RTDs) above 1,000 kA/cm2. Based on this achievement very mature InP-based RTD with current densities above 500 kA/cm2 are nowadays the leading solid-state THz device [1, 2]. Here, we show that even triple-barrier RTD (TBRTD) devices now reach a current density in excess of 250 kA/cm2 making this element ideally suited for rectification [3] but now at THz frequencies. Figure 1 is the state of art of THz detection sensitivity of previously reported zero bias detectors. Focusing on such zero bias broadband THz detection, we have also been studying on a design policy for a μm-sized on-chip self-complementally antenna and especially we have reported basic performances of a bow-tie antenna[4,5] integrated with a conventional homogeneous semiconductor mesa structure. However, it was still limited studies considering neither of actual nonlinear devices and peripheral circuits.
利用自互补领结天线集成的三势垒谐振隧道二极管分析太赫兹零偏压探测器
近年来,重发射极掺杂并没有降低势垒厚度,反而使共振隧道二极管的峰值电流密度提高到1000 kA/cm2以上。基于这一成就,电流密度超过500 kA/cm2的非常成熟的基于inp的RTD是目前领先的固态太赫兹器件[1,2]。在这里,我们表明,即使是三垒RTD (TBRTD)器件现在也能达到超过250 kA/cm2的电流密度,使该元件非常适合整流[3],但现在是在太赫兹频率下。图1是先前报道的零偏检测器的太赫兹探测灵敏度的最新技术。专注于这种零偏频宽带太赫兹探测,我们也一直在研究μm尺寸的片上自互补天线的设计策略,特别是我们报道了与传统均匀半导体平台结构集成的领结天线的基本性能[4,5]。然而,考虑到实际的非线性器件和外围电路的研究仍然有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信