Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

IF 7.9 Q1 Medicine
Julia M Rogers, Martha L Bulyk
{"title":"Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.","authors":"Julia M Rogers, Martha L Bulyk","doi":"10.1002/wsbm.1423","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"10 5","pages":"e1423"},"PeriodicalIF":7.9000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6202284/pdf/nihms954947.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology.

Abstract Image

Abstract Image

Abstract Image

转录因子-DNA相互作用的多样化和基因调控网络的进化。
序列特异性转录因子(TFs)与基因组中的短 DNA 序列结合,调节目标基因的表达。在过去的十年中,众多技术进步使得许多转录因子的 DNA 结合特异性得以确定。对许多 TF 进行大规模筛选后,建立了 TF DNA 结合特异性数据库,通常以位置权重矩阵(PWM)表示。尽管在系统地确定和预测结合特异性方面取得了巨大进展,但在详细研究特定 TF 与 DNA 的相互作用时,仍会发现许多令人惊讶的现象。同源 TF 的结合特异性可能存在微妙的差异,而这种差异通过观察它们的 PWM 并不能立即发现。这些差异会影响基因的调控输出,并使 TF 在进化过程中重新连接转录网络。本综述讨论了在 TF-DNA 相互作用研究中的最新观察结果,这些观察结果凸显了继续深入分析 TF-DNA 相互作用及其内在复杂性的重要性。本文归类于生物机制 > 调控生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信