A C-GAN denoising algorithm in Projection Domain for Micro-CT

Q4 Biochemistry, Genetics and Molecular Biology
Lujie Chen, Liang Zheng, Maosen Lian, Shouhua Luo
{"title":"A C-GAN denoising algorithm in Projection Domain for Micro-CT","authors":"Lujie Chen, Liang Zheng, Maosen Lian, Shouhua Luo","doi":"10.32604/mcb.2019.07386","DOIUrl":null,"url":null,"abstract":"Micro-CT provides a high-resolution 3D imaging of micro-architecture in a non-invasive way, which becomes a significant tool in biomedical research and preclinical applications. Due to the limited power of micro-focus X-ray tube, photon starving occurs and noise is inevitable for the projection images, resulting in the degradation of spatial resolution, contrast and image details. In this paper, we propose a C-GAN (Conditional Generative Adversarial Nets) denoising algorithm in projection domain for Micro-CT imaging. The noise statistic property is utilized directly and a novel variance loss is developed to suppress the blurry effects during denoising procedure. Conditional Generative Adversarial Networks (C-GAN) is employed as a framework to implement the denoising task. To guarantee the pixelwised accuracy, fully convolutional network is served as the generator structure. During the alternative training of the generator and the discriminator, the network is able to learn noise distribution automatically. Moreover, residual learning and skip connection architecture are applied for faster network training and further feature fusion. To evaluate the denoising performance, mouse lung, milkvetch root and bamboo stick are imaged by micro-CT in the experiments. Compared with BM3D, CNN-MSE and CNN-VGG, the proposed method can suppress noise effectively and recover image details without introducing any artifacts or blurry effect. The result proves that our method is feasible, efficient and practical.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.07386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

Abstract

Micro-CT provides a high-resolution 3D imaging of micro-architecture in a non-invasive way, which becomes a significant tool in biomedical research and preclinical applications. Due to the limited power of micro-focus X-ray tube, photon starving occurs and noise is inevitable for the projection images, resulting in the degradation of spatial resolution, contrast and image details. In this paper, we propose a C-GAN (Conditional Generative Adversarial Nets) denoising algorithm in projection domain for Micro-CT imaging. The noise statistic property is utilized directly and a novel variance loss is developed to suppress the blurry effects during denoising procedure. Conditional Generative Adversarial Networks (C-GAN) is employed as a framework to implement the denoising task. To guarantee the pixelwised accuracy, fully convolutional network is served as the generator structure. During the alternative training of the generator and the discriminator, the network is able to learn noise distribution automatically. Moreover, residual learning and skip connection architecture are applied for faster network training and further feature fusion. To evaluate the denoising performance, mouse lung, milkvetch root and bamboo stick are imaged by micro-CT in the experiments. Compared with BM3D, CNN-MSE and CNN-VGG, the proposed method can suppress noise effectively and recover image details without introducing any artifacts or blurry effect. The result proves that our method is feasible, efficient and practical.
微ct投影域C-GAN去噪算法
Micro-CT以无创的方式提供了微结构的高分辨率3D成像,成为生物医学研究和临床前应用的重要工具。由于微聚焦x射线管的功率有限,投影图像不可避免地会产生光子饥饿和噪声,从而导致空间分辨率、对比度和图像细节的下降。本文提出了一种基于C-GAN(条件生成对抗网络)的投影域微ct图像去噪算法。直接利用噪声统计特性,提出了一种新的方差损失方法来抑制去噪过程中的模糊效应。采用条件生成对抗网络(C-GAN)作为框架实现去噪任务。为了保证图像的像素化精度,我们采用了全卷积网络作为生成器结构。在产生器和鉴别器交替训练的过程中,网络能够自动学习噪声分布。此外,残差学习和跳跃连接架构的应用加快了网络训练速度,进一步实现了特征融合。实验采用微ct对小鼠肺、黄芪根和竹竿进行图像处理,评价其去噪效果。与BM3D、CNN-MSE和CNN-VGG相比,该方法能够有效抑制噪声,恢复图像细节,不引入伪影和模糊效果。结果证明了该方法的可行性、有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信