Acute aquatic toxicity of two commonly used fungicides to midwestern amphibian larvae.

IF 2.4 4区 环境科学与生态学 Q2 ECOLOGY
Andrew P Hopkins, Jason T Hoverman
{"title":"Acute aquatic toxicity of two commonly used fungicides to midwestern amphibian larvae.","authors":"Andrew P Hopkins,&nbsp;Jason T Hoverman","doi":"10.1007/s10646-023-02629-8","DOIUrl":null,"url":null,"abstract":"<p><p>Fungicide usage has increased globally in response to the rise in fungal pathogens, especially in the agricultural sector. However, research examining the toxicity of fungicides is still limited for many aquatic species. In this study, we examined the acute toxicity of two widely used fungicides, chlorothalonil and pyraclostrobin, on six North American larval amphibian species across multiple families using 96-h LC50 tests. We found that pyraclostrobin was approximately 3.5x more toxic than chlorothalonil; estimated LC50 values ranged from 5-18 µg/L for pyraclostrobin and 15-50 µg/L for chlorothalonil. Comparing across amphibian groups, we found that salamanders were 3x more sensitive to pyraclostrobin than anuran species and equally as sensitive to chlorothalonil. Notably, our estimated LC50 values within the range of the expected environmental concentration for these fungicides suggesting environmental exposures could lead to direct mortality in these species. Given the widespread and increasing usage of fungicides, additional work should be conducted to assess the general risk posed by these chemicals to amphibian and their associated aquatic habitats.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":"32 2","pages":"188-195"},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-023-02629-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Fungicide usage has increased globally in response to the rise in fungal pathogens, especially in the agricultural sector. However, research examining the toxicity of fungicides is still limited for many aquatic species. In this study, we examined the acute toxicity of two widely used fungicides, chlorothalonil and pyraclostrobin, on six North American larval amphibian species across multiple families using 96-h LC50 tests. We found that pyraclostrobin was approximately 3.5x more toxic than chlorothalonil; estimated LC50 values ranged from 5-18 µg/L for pyraclostrobin and 15-50 µg/L for chlorothalonil. Comparing across amphibian groups, we found that salamanders were 3x more sensitive to pyraclostrobin than anuran species and equally as sensitive to chlorothalonil. Notably, our estimated LC50 values within the range of the expected environmental concentration for these fungicides suggesting environmental exposures could lead to direct mortality in these species. Given the widespread and increasing usage of fungicides, additional work should be conducted to assess the general risk posed by these chemicals to amphibian and their associated aquatic habitats.

两种常用杀菌剂对中西部两栖类幼虫的急性水生毒性。
由于真菌病原体的增加,杀菌剂的使用在全球范围内有所增加,特别是在农业部门。然而,对许多水生物种杀菌剂毒性的研究仍然有限。在这项研究中,我们用96小时LC50测试了两种广泛使用的杀菌剂百菌清和嘧菌酯对六种北美两栖动物幼虫的急性毒性。我们发现吡唑菌酯的毒性大约是百菌清的3.5倍;pyraclostrobin的LC50值为5-18µg/L,百菌清的LC50值为15-50µg/L。在两栖动物群体中进行比较,我们发现蝾螈对吡虫胺的敏感性是无脊椎动物的3倍,对百菌清的敏感性同样高。值得注意的是,我们估计的LC50值在这些杀菌剂的预期环境浓度范围内,这表明环境暴露可能导致这些物种的直接死亡。鉴于杀菌剂的广泛和日益增加的使用,应开展更多的工作,以评估这些化学品对两栖动物及其相关水生生境构成的一般风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecotoxicology
Ecotoxicology 环境科学-毒理学
CiteScore
5.30
自引率
3.70%
发文量
107
审稿时长
4.7 months
期刊介绍: Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信