Ai Meng, Siang Wei, Lihuan Yan, Yao Xiao, Zhiwen Ding, Yan Feng
{"title":"Bioinformatic analysis and validation of cardiac hypertrophy-related genes.","authors":"Ai Meng, Siang Wei, Lihuan Yan, Yao Xiao, Zhiwen Ding, Yan Feng","doi":"10.4149/gpb_2022059","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we have screened genes involved in myocardial hypertrophy (MH) using a mice model for compensatory stress overload (transverse aortic constriction, TAC) and bioinformatics. Microarrays were downloaded, and according to the Venn diagram, three groups of data intersections were obtained. Gene function was analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), whereas protein-protein interactions (PPI) were analyzed using the STRING database. A mouse aortic arch ligation model was established to verify and screen the expression of hub genes. A total of 53 (DEGs) and 32 PPI genes were screened out. GO analysis showed DEGs mainly involved in cytokine and peptide inhibitor activity. KEGG analysis focused on ECM receptor interaction and osteoclast differentiation. Expedia co-expression gene network analysis showed that Serpina3n, Cdkn1a, Fos, Col5a2, Fn1 and Timp1 participated in the occurrence and development of MH. RT-qPCR verified that all the other 9 hub genes except Lox were highly expressed in TAC mice. This study lays a foundation for further study on the molecular mechanism of MH and for screening of molecular markers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2022059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we have screened genes involved in myocardial hypertrophy (MH) using a mice model for compensatory stress overload (transverse aortic constriction, TAC) and bioinformatics. Microarrays were downloaded, and according to the Venn diagram, three groups of data intersections were obtained. Gene function was analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), whereas protein-protein interactions (PPI) were analyzed using the STRING database. A mouse aortic arch ligation model was established to verify and screen the expression of hub genes. A total of 53 (DEGs) and 32 PPI genes were screened out. GO analysis showed DEGs mainly involved in cytokine and peptide inhibitor activity. KEGG analysis focused on ECM receptor interaction and osteoclast differentiation. Expedia co-expression gene network analysis showed that Serpina3n, Cdkn1a, Fos, Col5a2, Fn1 and Timp1 participated in the occurrence and development of MH. RT-qPCR verified that all the other 9 hub genes except Lox were highly expressed in TAC mice. This study lays a foundation for further study on the molecular mechanism of MH and for screening of molecular markers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.