{"title":"A signalling cascade for Ral.","authors":"You Wu, David J Reiner","doi":"10.1080/21541248.2021.1917953","DOIUrl":null,"url":null,"abstract":"<p><p>Ras is the most mutated oncoprotein in cancer. Among the three oncogenic effectors of Ras - Raf, PI3 Kinase and RalGEF>Ral - signalling through RalGEF>Ral (Ras-like) is by far the least well understood. A variety of signals and binding partners have been defined for Ral, yet we know little of how Ral functions <i>in vivo</i>. This review focuses on previous research in <i>Drosophila</i> that defined a function for Ral in apoptosis and established indirect relationships among Ral, the CNH-domain MAP4 Kinase <i>misshapen</i>, and the JNK MAP kinase <i>basket</i>. Most of the described signalling components are not essential in <i>C. elegans</i>, facilitating subsequent analysis using developmental patterning of the <i>C. elegans</i> vulval precursor cells (VPCs). The functions of two paralogous CNH-domain MAP4 Kinases were defined relative to Ras>Raf, Notch and Ras>RalGEF>Ral signalling in VPCs. MIG-15, the nematode ortholog of <i>misshapen</i>, antagonizes both the Ral-dependent and Ras>Raf-dependent developmental outcomes. In contrast, paralogous GCK-2, the <i>C. elegans</i> ortholog of <i>Drosophila happyhour</i>, propagates the 2°-promoting signal of Ral. Manipulations via CRISPR of Ral signalling through GCK-2 coupled with genetic epistasis delineated a Ras>RalGEF>Ral>Exo84>GCK-2>MAP3K<sup>MLK-1</sup>> p38<sup>PMK-1</sup> cascade. Thus, genetic analysis using invertebrate experimental organisms defined a cascade from Ras to p38 MAP kinase.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1917953","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2021.1917953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Ras is the most mutated oncoprotein in cancer. Among the three oncogenic effectors of Ras - Raf, PI3 Kinase and RalGEF>Ral - signalling through RalGEF>Ral (Ras-like) is by far the least well understood. A variety of signals and binding partners have been defined for Ral, yet we know little of how Ral functions in vivo. This review focuses on previous research in Drosophila that defined a function for Ral in apoptosis and established indirect relationships among Ral, the CNH-domain MAP4 Kinase misshapen, and the JNK MAP kinase basket. Most of the described signalling components are not essential in C. elegans, facilitating subsequent analysis using developmental patterning of the C. elegans vulval precursor cells (VPCs). The functions of two paralogous CNH-domain MAP4 Kinases were defined relative to Ras>Raf, Notch and Ras>RalGEF>Ral signalling in VPCs. MIG-15, the nematode ortholog of misshapen, antagonizes both the Ral-dependent and Ras>Raf-dependent developmental outcomes. In contrast, paralogous GCK-2, the C. elegans ortholog of Drosophila happyhour, propagates the 2°-promoting signal of Ral. Manipulations via CRISPR of Ral signalling through GCK-2 coupled with genetic epistasis delineated a Ras>RalGEF>Ral>Exo84>GCK-2>MAP3KMLK-1> p38PMK-1 cascade. Thus, genetic analysis using invertebrate experimental organisms defined a cascade from Ras to p38 MAP kinase.