Peramalan Kebutuhan Daya Listrik Menggunakan Model ARIMA dan Fungsi Transfer (Studi Kasus: PT. PLN (Persero) Area Sumbawa)

M. Mikhratunnisa, Trihana Susilawati
{"title":"Peramalan Kebutuhan Daya Listrik Menggunakan Model ARIMA dan Fungsi Transfer (Studi Kasus: PT. PLN (Persero) Area Sumbawa)","authors":"M. Mikhratunnisa, Trihana Susilawati","doi":"10.15642/MANTIK.2018.4.2.122-127","DOIUrl":null,"url":null,"abstract":"Energy is one of the basic need of human being. One of the vital energy is electricity. The need of electricity in NTB is increase along with the citizen economic development in NTB especially in Sumbawa regency. Therefore, there is a need for the right way in adjusting the amount of electrical capacity to match customer demand. One way that can be done is to forecast/ predict the need for electricity. The forecast can be used by using the ARIMA and Transfer Function models. The results of the study show that using the ARIMA model is estimated to require electricity in 2018 experienced an increase of 18,21% from the previous year, while using the transfer function model is estimated to increase by 18,18% from the previous year.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/MANTIK.2018.4.2.122-127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Energy is one of the basic need of human being. One of the vital energy is electricity. The need of electricity in NTB is increase along with the citizen economic development in NTB especially in Sumbawa regency. Therefore, there is a need for the right way in adjusting the amount of electrical capacity to match customer demand. One way that can be done is to forecast/ predict the need for electricity. The forecast can be used by using the ARIMA and Transfer Function models. The results of the study show that using the ARIMA model is estimated to require electricity in 2018 experienced an increase of 18,21% from the previous year, while using the transfer function model is estimated to increase by 18,18% from the previous year.
电力需求模型使用ARIMA和转移功能(案例研究:PT. PLN (Persero)采集区
能源是人类的基本需求之一。最重要的能源之一是电。随着国民经济的发展,特别是松巴哇县对电力的需求不断增加。因此,有必要以正确的方式调整电量容量,以满足客户的需求。可以做到的一种方法是预测电力需求。预报可采用ARIMA模型和传递函数模型。研究结果表明,使用ARIMA模型估计2018年的用电量比上一年增加18.21%,而使用传递函数模型估计比上一年增加18.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信