Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ruoyu Shi, Pengfei Gong, Yutong Liu, Qiaoqiao Luo, Wei Chen, Chengtao Wang
{"title":"Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture.","authors":"Ruoyu Shi,&nbsp;Pengfei Gong,&nbsp;Yutong Liu,&nbsp;Qiaoqiao Luo,&nbsp;Wei Chen,&nbsp;Chengtao Wang","doi":"10.1002/yea.3831","DOIUrl":null,"url":null,"abstract":"<p><p>When Monascus purpureus was co-cultured with Saccharomyces cerevisiae, we noted significant changes in the secondary metabolism and morphological development of Monascus. In yeast co-culture, although the pH was not different from that of a control, the Monascus mycelial biomass increased during fermentation, and the Monacolin K yield was significantly enhanced (up to 58.87% higher). However, pigment production did not increase. Co-culture with S. cerevisiae significantly increased the expression levels of genes related to Monacolin K production (mokA-mokI), especially mokE, mokF, and mokG. Linoleic acid, that has been implicated in playing a regulating role in the secondary metabolism and morphology of Monascus, was hypothesized to be the effector. Linoleic acid was detected in the co-culture, and its levels changed during fermentation. Addition of linoleic acid increased Monacolin K production and caused similar morphological changes in Monascus spores and mycelia. Exogenous linoleic acid also significantly upregulated the transcription levels of all nine genes involved in the biosynthesis of Monacolin K (up to 69.50% higher), consistent with the enhanced Monacolin K yield. Taken together, our results showed the effect of S. cerevisiae co-culture on M. purpureus and suggested linoleic acid as a specific quorum-sensing molecule in Saccharomyces-Monascus co-culture.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

When Monascus purpureus was co-cultured with Saccharomyces cerevisiae, we noted significant changes in the secondary metabolism and morphological development of Monascus. In yeast co-culture, although the pH was not different from that of a control, the Monascus mycelial biomass increased during fermentation, and the Monacolin K yield was significantly enhanced (up to 58.87% higher). However, pigment production did not increase. Co-culture with S. cerevisiae significantly increased the expression levels of genes related to Monacolin K production (mokA-mokI), especially mokE, mokF, and mokG. Linoleic acid, that has been implicated in playing a regulating role in the secondary metabolism and morphology of Monascus, was hypothesized to be the effector. Linoleic acid was detected in the co-culture, and its levels changed during fermentation. Addition of linoleic acid increased Monacolin K production and caused similar morphological changes in Monascus spores and mycelia. Exogenous linoleic acid also significantly upregulated the transcription levels of all nine genes involved in the biosynthesis of Monacolin K (up to 69.50% higher), consistent with the enhanced Monacolin K yield. Taken together, our results showed the effect of S. cerevisiae co-culture on M. purpureus and suggested linoleic acid as a specific quorum-sensing molecule in Saccharomyces-Monascus co-culture.

亚油酸作为群体感应分子在红曲霉与酿酒酵母共培养中的作用。
当红曲霉与酿酒酵母共培养时,我们注意到红曲霉的次生代谢和形态发育发生了显著变化。在酵母菌共培养中,虽然pH值与对照没有差异,但发酵过程中红曲霉菌丝生物量增加,莫纳可林K产量显著提高(最高可达58.87%)。然而,色素产量没有增加。与酿酒酵母共培养可显著提高莫纳可林产K相关基因(mokA-mokI)的表达水平,尤其是mokE、mokF和mokG。亚油酸被认为在红曲霉的次生代谢和形态中起调节作用,被认为是影响因子。在共培养中检测到亚油酸,其含量在发酵过程中发生变化。添加亚油酸增加了莫纳可林K的产量,并引起了红曲霉孢子和菌丝的形态变化。外源亚油酸还显著上调了莫纳可林K生物合成相关的9个基因的转录水平(最高上调69.50%),与莫纳可林K产量的提高一致。综上所述,我们的研究结果显示了酿酒酵母对紫红色分枝杆菌的影响,并表明亚油酸是酵母与红曲霉共培养中特定的群体感应分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信