Overview of Finite-Element Analysis in Simulation of SiC Power Device Packaging

Liangtao Li, Jiuyang Tang, J. Zhang, Jing Zhang, Yingcan Zhu, Guoqi Zhang, Pan Liu
{"title":"Overview of Finite-Element Analysis in Simulation of SiC Power Device Packaging","authors":"Liangtao Li, Jiuyang Tang, J. Zhang, Jing Zhang, Yingcan Zhu, Guoqi Zhang, Pan Liu","doi":"10.1109/SSLChinaIFWS54608.2021.9675174","DOIUrl":null,"url":null,"abstract":"The development of silicon-based high-power devices, e.g. IGBTs, has reached its application limits in terms of high-temperature and high-frequency harsh operating conditions. Wide bandgap (WBG) power devices (such as silicon carbide, SiC) are currently one of the most promising power devices for replacement. Due to their intrinsic bandgap, SiC high-power devices have proven their superior performance in high-frequency and high-temperature working scenarios. With the increasing demand of high-power semiconductor devices in industries such as new-energy vehicles, high-speed railway systems, and aerospace, the conditions of SiC power semiconductor devices have become more and more complex, which brings challenges to electronic packaging technology. Due to thermal management and reliability requirements for SiC power devices, customized advanced heat dissipation structures, and high-temperature soldering materials have been introduced in power device packaging technology. The reliability verification of these new electronic packaging technologies is often time-consuming and labor-intensive, so designers hope to obtain results consistent with actual experimental data through the utilization of computer-aided design methods, such as finite-element analysis (FEA), which will greatly reduce the number of iterations of physical prototypes and the development time. This article reviewed and discussed the application of FEA in the latest packaging technology, including the extraction of the thermal resistance network of the SiC power module, the thermal simulation of the novel efficient cooling structure, the thermo-mechanical analysis of the high-temperature packaging material, and the long-term reliability FEA of the SiC power devices.","PeriodicalId":6816,"journal":{"name":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","volume":"35 1","pages":"53-57"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSLChinaIFWS54608.2021.9675174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of silicon-based high-power devices, e.g. IGBTs, has reached its application limits in terms of high-temperature and high-frequency harsh operating conditions. Wide bandgap (WBG) power devices (such as silicon carbide, SiC) are currently one of the most promising power devices for replacement. Due to their intrinsic bandgap, SiC high-power devices have proven their superior performance in high-frequency and high-temperature working scenarios. With the increasing demand of high-power semiconductor devices in industries such as new-energy vehicles, high-speed railway systems, and aerospace, the conditions of SiC power semiconductor devices have become more and more complex, which brings challenges to electronic packaging technology. Due to thermal management and reliability requirements for SiC power devices, customized advanced heat dissipation structures, and high-temperature soldering materials have been introduced in power device packaging technology. The reliability verification of these new electronic packaging technologies is often time-consuming and labor-intensive, so designers hope to obtain results consistent with actual experimental data through the utilization of computer-aided design methods, such as finite-element analysis (FEA), which will greatly reduce the number of iterations of physical prototypes and the development time. This article reviewed and discussed the application of FEA in the latest packaging technology, including the extraction of the thermal resistance network of the SiC power module, the thermal simulation of the novel efficient cooling structure, the thermo-mechanical analysis of the high-temperature packaging material, and the long-term reliability FEA of the SiC power devices.
SiC功率器件封装仿真中的有限元分析综述
硅基大功率器件(如igbt)的发展在高温、高频恶劣工作条件下已经达到了应用极限。宽带隙(WBG)功率器件(如碳化硅,SiC)是目前最有希望替代的功率器件之一。由于其固有的带隙,SiC大功率器件在高频和高温工作环境中已经证明了其优越的性能。随着新能源汽车、高速铁路系统、航空航天等行业对大功率半导体器件的需求不断增加,SiC功率半导体器件的条件也越来越复杂,这给电子封装技术带来了挑战。由于SiC功率器件的热管理和可靠性要求,在功率器件封装技术中引入了定制的先进散热结构和高温焊接材料。这些新型电子封装技术的可靠性验证往往耗时耗力,因此设计人员希望通过利用有限元分析(FEA)等计算机辅助设计方法获得与实际实验数据一致的结果,这将大大减少物理样机的迭代次数和开发时间。本文综述和讨论了有限元分析在最新封装技术中的应用,包括SiC功率模块热阻网络的提取、新型高效散热结构的热模拟、高温封装材料的热力学分析以及SiC功率器件的长期可靠性有限元分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信