Luminescence age calculation through Bayesian convolution of equivalent dose and dose-rate distributions: the De_Dr model

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS
N. Mercier, Jean-Michel Galharret, C. Tribolo, S. Kreutzer, Anne Philippe
{"title":"Luminescence age calculation through Bayesian convolution of equivalent dose and dose-rate distributions: the <i>D</i><sub>e</sub>_<i>D</i><sub>r</sub> model","authors":"N. Mercier, Jean-Michel Galharret, C. Tribolo, S. Kreutzer, Anne Philippe","doi":"10.5194/gchron-4-297-2022","DOIUrl":null,"url":null,"abstract":"Abstract. In nature, each mineral grain (quartz or feldspar) receives a dose rate (Dr) specific to its environment. The dose-rate distribution therefore reflects the micro-dosimetric context of grains of similar size. If all the grains were well bleached at deposition, this distribution is assumed to correspond, within uncertainties, with the distribution of equivalent doses (De). The combination of the De and Dr distributions in the De_Dr model proposed here\nwould then allow calculation of the true depositional age. If grains whose\nDe values are not representative of this age (hereafter called\n“outliers”) are present in the De distribution, this model allows them to be identified before the age is calculated, enabling their exclusion. As the De_Dr approach relies only on the Dr distribution to describe the De distribution, the model avoids any assumption about the shape of the De distribution, which can be difficult to justify. Herein, we outline the mathematical concepts of the De_Dr approach (more details are given in Galharret\net al., 2021) and the exploitation of this Bayesian modelling based on an R\ncode available in the R package “Luminescence”. We also present a series of tests using simulated Dr and De distributions with and without outliers and show that the De_Dr approach can be an alternative to available models for interpreting De distributions.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-4-297-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. In nature, each mineral grain (quartz or feldspar) receives a dose rate (Dr) specific to its environment. The dose-rate distribution therefore reflects the micro-dosimetric context of grains of similar size. If all the grains were well bleached at deposition, this distribution is assumed to correspond, within uncertainties, with the distribution of equivalent doses (De). The combination of the De and Dr distributions in the De_Dr model proposed here would then allow calculation of the true depositional age. If grains whose De values are not representative of this age (hereafter called “outliers”) are present in the De distribution, this model allows them to be identified before the age is calculated, enabling their exclusion. As the De_Dr approach relies only on the Dr distribution to describe the De distribution, the model avoids any assumption about the shape of the De distribution, which can be difficult to justify. Herein, we outline the mathematical concepts of the De_Dr approach (more details are given in Galharret et al., 2021) and the exploitation of this Bayesian modelling based on an R code available in the R package “Luminescence”. We also present a series of tests using simulated Dr and De distributions with and without outliers and show that the De_Dr approach can be an alternative to available models for interpreting De distributions.
通过等效剂量和剂量率分布的贝叶斯卷积计算发光年龄:De_Dr模型
摘要在自然界中,每一种矿物颗粒(石英或长石)都受到与其环境相适应的剂量率(Dr)。因此,剂量率分布反映了类似大小颗粒的微剂量学背景。如果所有颗粒在沉积时都充分漂白,则假定这种分布在不确定度范围内与当量剂量(De)的分布相对应。在本文提出的De_Dr模型中,De和Dr分布的结合可以计算出真实的沉积年龄。如果De分布中存在De值不代表该年龄的颗粒(以下称为“异常值”),则该模型允许在计算年龄之前识别它们,从而排除它们。由于De_Dr方法仅依赖Dr分布来描述De分布,该模型避免了对De分布形状的任何假设,这很难证明。在这里,我们概述了De_Dr方法的数学概念(更多细节见Galharretet等人,2021),以及基于R包“Luminescence”中可用的Rcode的这种贝叶斯建模的利用。我们还提出了一系列使用模拟Dr和De分布(有和没有离群值)的测试,并表明De_Dr方法可以替代现有模型来解释De分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信