A central limit theorem for additive functionals of increasing trees

D. Ralaivaosaona, S. Wagner
{"title":"A central limit theorem for additive functionals of increasing trees","authors":"D. Ralaivaosaona, S. Wagner","doi":"10.1017/S0963548318000585","DOIUrl":null,"url":null,"abstract":"Abstract A tree functional is called additive if it satisfies a recursion of the form $F(T) = \\sum_{j=1}^k F(B_j) + f(T)$, where B1, …, Bk are the branches of the tree T and f (T) is a toll function. We prove a general central limit theorem for additive functionals of d-ary increasing trees under suitable assumptions on the toll function. The same method also applies to generalized plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law that we prove for the size of the automorphism group of d-ary increasing trees, but other examples (old and new) are covered as well.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548318000585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract A tree functional is called additive if it satisfies a recursion of the form $F(T) = \sum_{j=1}^k F(B_j) + f(T)$, where B1, …, Bk are the branches of the tree T and f (T) is a toll function. We prove a general central limit theorem for additive functionals of d-ary increasing trees under suitable assumptions on the toll function. The same method also applies to generalized plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law that we prove for the size of the automorphism group of d-ary increasing trees, but other examples (old and new) are covered as well.
递增树的可加泛函的中心极限定理
一个树泛函如果满足$F(T) = \sum_{j=1}^k F(B_j) + F(T) $的递归形式,则称为加性泛函,其中B1,…,Bk是树T的分支,F(T)是收费函数。在收费函数的适当假设下,证明了d阶递增树的加性泛函的一般中心极限定理。同样的方法也适用于广义面向平面的递增树(GPORTs)。我们的主要应用之一是对数正态定律,我们证明了d- y递增树的自同构群的大小,但也涵盖了其他示例(旧的和新的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信